Outline

- About the project
- Quick overview of the software capabilities
- Point cloud processing with CloudCompare
The project
2003: PhD for EDF R&D

- EDF
 - Main French power utility
 - More than 150,000 employees worldwide
 - 2,000 @ R&D (< 2%)
 - 200 know about CloudCompare (< 0.2%)
 - Sales >75 B€
 - > 200 dams + 58 nuclear reactors (19 plants)
EDF and Laser Scanning

- **EDF** = former owner of **Mensi** (*now Trimble Laser Scanning*)

- Main scanning activity: *as-built* documentation

Scanning a single nuclear reactor building
- 2002: 3 days, 50 M. points
- 2014: 1.5 days, **50 Bn** points (+ high res. photos)
EDF and Laser Scanning

- Other scanning activities:
 - Building monitoring (dams, cooling towers, etc.)
 - Landslide monitoring
 - Hydrology
 - Historical preservation (EDF Foundation)
Change detection on 3D geometric data

- Application to Emergency Mapping

Inspired by 9/11 post-attacks recovery efforts

(see “Mapping Ground Zero” by J. Kern, Optech, Nov. 2001)

TLS was used for: visualization, optimal crane placement, measurements, monitoring the subsidence of the wreckage pile, slurry wall monitoring, etc.
CloudCompare V1

- 2004-2006

- Aim: quickly detecting changes by comparing TLS point clouds…
 - with a CAD mesh
 - or with another (high density) cloud
CloudCompare V2

- 2007: “Industrialization” of CloudCompare … for internal use only!

- Rationale:
 - *idle reactor = 6 M€ / day*
 - acquired data can be checked on-site → less missing or erroneous data → no need to come back later
 - checking the work of sub-contractors in charge of modeling became fast and accurate
 - the algorithms are also used for clash detection during virtual simulation of tricky maintenance operations → highly reduces the risk of issues or *bad surprises* during the actual maintenance operation

+ EDF is not a software company
The open-source path

- 2009/2010: CloudCompare V2.1
 - Already a multi-purpose point cloud editing and processing software

- 2017: CloudCompare V2.8

- 2019: CloudCompare V2.11

Runs on:
- Windows (XP / 7 / 8 / 10)
- Mac OS (Andy Maloney)
- Linux (Romain Janvier)

Support for 3D mouse & stereo displays
Open Source!

- Evolves quickly…
- … in the direction users want (*faster if users actively participate to the developments 😊*)
- Remains under close supervision of its administrator
- Manufacturer independent
- Supported by various companies and public institutions (EDF, BRGM, CNRS, etc.)
Open Source!

- Free...

- ...however, someone still needs to pay ;)
 - either by developing new functionalities
 - or by paying someone else to do it

- Plugins are not necessarily open source or free
Users

- Too many 😊
 - Academics:
 - remote sensing
 - geology
 - archeology
 - etc.
 - Surveyors
 - Forensic experts
 - Architects
 - MDs, dentists
 - 3D designers
 - Artist?! 😅

Developers

- Barely enough 😁
 - a few PhD students and research engineers
 - none
 - 1
 - none
 - none
 - none
 - none
CloudCompare Event 2020

Event Timing: March 11-13, 2020

Developers training course: March 11-12 (20 ⬃) FULL!
Users workshop: March 13 (100 ⬃)

Event information and registration

REGISTER NOW ➤ FREE
Worldwide

Sessions (November)

> 3300 users registered to the newsletter
Citations in scientific articles

source: Google scholar
Quick overview
Interface
Inputs / outputs

- point clouds
 - ASCII, PLY, LAS, E57, PTX, PCD… + Faro, Riegl, DotProduct
- triangular meshes
 - OBJ, PLY, STL, OFF, FBX
- polylines
 - SHP, DXF, etc.
- rasters
 - geotiff, etc. (thanks to GDAL)
- calibrated pictures
 - Bundler OUT, Photoscan PSZ
- sensors
 - TLS or projective cameras

+ dedicated format: BIN (for projects)
Display capabilities

- 0-20M points
- 20M-100M: mid-range
- 100M-500M: high-range

> 500 M. points?
- for now, use the command line mode 😊
- later: out-of-core support?
Scalar fields

- One value per point

- The value can be anything (distance, intensity, density, roughness, confidence, curvature, temperature, time, etc.)

- Values can be (dynamically) color-coded
Scalar fields

- Values can be
 - mixed (+,-,/,x)
 - transformed (cos, log, etc.)
 - filtered (spatial smoothing, spatial gradient, etc.)
 - imported or exported as a coordinate dimension
 - merged with colors
 - transferred to another entity (+ interpolated)

- Statistics can be computed

- Clouds can be processed based on those values
 - Segmentation ("Filter by value")
 - Subsampling
Main features

- Interactive tools
 - transformation, segmentation, cross section
- Colors
 - create, convert, level, etc.
- Normals
 - create, convert, orient
Main features

- **Mesh operations**
 - create (2.5D Delaunay), sample points, smooth, etc.
 - → *see Meshlab for more*

- **Scalar fields operations**
 - filter points by value, convert, smooth, gradient, etc.

- **Point picking,**
 Distance / angle measurements

- **Others**
 - Subsample, merge, scale, etc.
Main tools

- Registration
 - point-pair-based alignment, ICP

- Distances
 - Cloud-to-cloud (C2C), Cloud-to-mesh (C2M), Cloud-to-primitive (C2P), Robust cloud-to-cloud (M3C2)
Main tools

- Cleaning
 - SOR, etc.
- Rasterize
 - + contour plot
- 2.5D volume estimation
Main tools

- Segmentation
 - connected components, profile extraction, etc.

- Fitting
 - plane, sphere, quadric, etc.
Main tools

- Roughness, curvature, density and other geometric features computation

Features: "Contour detection in unstructured 3D point clouds", Hackel et al, 2016
Advanced point cloud processing
Built-in support

- Octree structure (fast construction, fast kNN)
- Sensors (TLS or Camera)
- Scan grids (structured point clouds)
- Full waveform

- Plugins
- Command line mode
M3C2

- Robust + signed C2C distances
 - Search correspondances along surface normal
 - Multi-scale approach
 - Uncertainty estimation based on local surface roughness
“3D uncertainty-based topographic change detection with SfM photogrammetry: precision maps for ground control and directly georeferenced surveys” by M. James et al.
Canupo

- Point cloud classification
 - Multi-scale local dimensionality feature
 - SVM based training

Cloth Simulation Filter (CSF)

- Ground points extraction from LiDAR point clouds

"An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation", W. Zhang et al., 2016
Compass

- Structural geology toolbox for the interpretation and analysis of virtual outcrop models
 - Delineation of geological units
 - Measurement of orientations and thicknesses

- Tracing and automated path ‘following’

"Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data", S. Thiele et al., 2017
Other plugins

- Automatic shape detection (Ransac Shape Detection)
- Geological facet extraction (Facets)
- Global illumination of clouds and meshes (PCV)
- 3D surface reconstruction (PoissonRecon)
- Animation rendering (Animation)
- Surface of Revolution Analysis (SRA)
- Planar surfaces cleaning (Virtual Broom)
- Hidden Points Removal (HPR)
- etc.
Creating your own plugin...

- ... is easy:
 - copy the ‘dummy’ plugin folder
 - replace the word ‘dummy’ in all files by your plugin name
 - and add the code for your plugin ‘action’ at the right place

- Plenty of examples
 - simply mimic another plugin that has the same workflow

- Ask questions on the forum (or send me an email)

- Development in C++ with Qt
Thanks for your attention!

CloudCompare
3D point cloud and mesh processing software
Open Source Project

Welcome to the official website of the CloudCompare project.
Want to know when a new release comes out? Subscribe to the newsletter

You can now follow us on twitter

CloudCompare 2020 Developers training & Workshop: March 11-13 2020
Visit the event page

CloudCompare (view, edit and process) ccViewer (light viewer only)

www.cloudcompare.org