Classifying Single Photon LiDAR data using Machine Learning and Open Source tools

Workshop on Single Photon and Geiger-Mode LiDAR

Víctor J. García Morales - Tracasa vgarcia@tracasa.es

Timeline

Data Capture Equipment

Beechcraft B200 King Air

Sensor LiDAR SPL100 - RCD30 Medium Format Camera - Stabilized Platform

LiDAR Data SPL100 - Navarra

Technical Specification

Area: 10.391 Km²

Point Density: 10 pts/m²

Overlap: 15%

Accuracy: XY: 20 cm Z: 15 cm

8th September – 16th November 2017

SPL100	Project
Flightlines	482
Total lenght	16.000 km
Height (a.s.l.)	3.900 – 6.300 m
Swath (average)	2300 m
Max. lenght	110 Km
Density per fligtline	14 ppsm
Speed (knots)	200
Sessions/Days	40/24

Information					
Total points	580.696.951.479				
Points Sensor Noise	98.114.268.808				
% Points Sensor Noise	16,84%				
Valid Points	482.582.682.671				
1x1 km Blocks	16.202				
Color	RGBNIr				
Classification	Automatic Classification				
Classes	Ground, Vegetation (Low. Medium, High), Building, Noise, Sensor Noise				

Final product: **DTM/DSM**

25cm / 50 cm / 1m / 2m

Analysis of the problem

- Final product requires very accurate data classification
- Tested Commercial/Open Source SW Critical: Licenses, computing time, result
- Heterogeneous project Area: Need homogeneous solution
- Same decision in classification

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

Expectative...

Reallity??

Workflow

Infraestructure

Training

Training Cluster - UPNA

15 computacional nodes – 13 CPU / 2 GPU 960 Gb RAM – 12 Tb Storage High Performance Computer (HPC) – Nasertic

38 nodes x 20 cores = 760

Tracasa Head Quarters - HTCondor

Classification

125 Computers working in parallel, distributed processing with different performance (1-2 cores)

Machine Learning: Supervised Method - Samples

- 160 samples manually classified (60 Million points)
- 75% Training 25% Validation.
- Every sample 50 m neighbourhood
- * * * * *

 **EuroSDR

- Classes: Ground, Low/medium/High Vegetation, Building, Low points.
- Need of very good classification.
- 0.012% Data clasified

Feature Extraction: >100 Characteristics

Variable	Created by
HDIFF	Tracasa
HeightAboveGround	PDAL
Red	LiDAR
Green	LiDAR
Blue	LiDAR
Infrared	LiDAR
NDVI	Tracasa
Intensity	LiDAR
CartoC2	Tracasa
CartoC6	Tracasa
Eigenvalue0 0-7	CGAL
Eigenvalue1 0-7	CGAL
Eigenvalue2 0-7	CGAL
Distance to plane 0-7	CGAL
Elevation 0-7	CGAL
Verticality 0-7	CGAL
Echo scatter 0-7	CGAL
Vertical dispersion 0-7	CGAL
Linearity 0-7	Tracasa
Planarity 0-7	Tracasa
Sphericity 0-7	Tracasa
Omnivariance 0-7	Tracasa
Anisotropy 0-7	Tracasa
Eigenentropy 0-7	Tracasa
ChangeOfCurvature 0-7	Tracasa

CGAL Characteristics - Neighbourhood

Minimum Voxel Size 25 cm

8 Scales: 50 cm, 1m, 2m, 4m, 8m, 16 m, 32m.

Box Plot Analysis

Combined analysis of the characteristics Selection of characteristics

Workflow

Exploratory Data Analysis

Training Algorithm

Different algorithm were tried:

- KNN
- SVM
- Decision tres
- Random Forest
- NN

- AdaBoost
- Naive Bayes
- Logistic Regression
- Extra Trees
- XG Boost

Best results: Random Forest and XG Boost

XGBoost more efficient and accurate.

Performance measures

$$Recall = \frac{TP}{TP + FN}$$
 $Precision = \frac{TP}{TP + FP}$

$$F - measure = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

	Predicted Class				
Real Class		Positive	Negative		
	Positive	True Positive	False Negative		
	Negative	False Positive	True Negative		

Cost Matrix

		Predicted Class					
		Ground	Low Vegetation	Medium Vegetation	High Vegetation	Building	Noise
Real Class	Ground (2)	0	25	40	80	90	60
	Low Vegetation (3)	10	0	0	40	80	65
	Medium Vegetation (4)	50	0	0	0	70	70
	High Vegetation (5)	100	60	0	0	60	75
	Building (6)	100	80	70	60	0	80
	Noise (11)	80	85	90	95	100	0

The importance of a point misclassified

Exploratory Data Analysis

Only 10% Samples where used for the training

Training Cluster: 100% Points of the Samples 24h 10% Points of the Samples 1h

f1-measure (por clase) – en test

id	f1 test 2	f1 test 3	f1 test 4	f1 test 5	f1 test 6	f1 test 11
10%	0,8592	0,0489	0,8223	0,9727	0,9404	0,4436
30%	0,8596	0,0511	0,8204	0,9722	0,9374	0,4419

Values calculated with the Validation samples

Exploratory Data Analysis

Tuning

- n estimators (number of trees) = 100
- learning rate
- max depth = 6 Levels
- min child weight
- gamma
- subsample
- colsample bytree
- reg alpha
- use class weights

Results

f1-measure (per class)

f1 test 2	f1 test 3	f1 test 4	f1 test 5	f1 test 6	f1 test 11
0,85735	0,11575	0,81802	0,97464	0,94309	0,42676

Confusion Matrix

	Predicted Class						
		2	3	4	5	6	11
	2	4598450	74670	216592	1652	60597	18462
	3	830416	79434	239919	308	125	1893
Real Class	4	287355	59351	2236707	96090	5331	2248
	5	511	75	64305	3410700	4169	42
	6	11823	3444	13920	10317	915228	711
	11	28134	3383	10038	9	25	24175

Final Model

Classification Workflow

Massive data Classification

Data Classified

High Performance Tracasa Head Quarters – HTCondor Computer (HPC) – Nasertic

100h 150h

Tracasa Head Quarters - HTCondor

100h

PDAL + plugins (available/ new)

Cars, water, bridges, Noise,...

Characteristics extraction // Classify // Post- processing

Data Classified

Final Remarks

- Most Important: Samples (Training Validation)
- Objective methodology to asses the Model
- Manual Classification vs Automatic Classification
- Possibility of using this technique with other Point Cloud (data/sensor/technology)
- Final product not perfect: Train model to avoid the post-processing
- Use of Open Source libraries and distributed processing

Classifying Single Photon LiDAR data using Machine Learning and Open Source tools

Víctor J. García Morales - Tracasa vgarcia@tracasa.es

