

VIENNA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF GEODESY AND GEOINFORMATION RESEARCH GROUPS PHOTOGRAMMETRY & REMOTE SENSING

2nd EuroSDR Workshop High Density Image Matching for DSM Computation

Results from Participant: TU Vienna

Dr. Camillo Ressl

car@ipf.tuwien.ac.at

Department of Geodesy and Geoinformation Vienna University of Technology www.geo.tuwien.ac.at

Software used: Match-T 5.5

- **§** Cost based Matching (CBM) similar to SGM
- **§** Default: matches every 3rd pixel (also every 1st or 2nd possible)
- § Match-T itself matches only one image pair for each XY-location
 - BUT: the error of the 3D point decreases with the number of rays:

Using >2 overlapping images increases:

- accuracy
- reliability
- completeness

 Exploit high image overlap using Match-T by matching overlapping image pairs and fusion of the pair wise matched DSMs

Layout of overlapping images

forward/side overlap: 60% / 60%

inhomogeneous coverage: 7 or 15 pairs

forward/side overlap: 80% / 50%

homogeneous coverage: 14 pairs

use overlap (n-1)/n (e.g. 50%, 66%, 75%, 80%,...) to get homogeneous coverage (i.e. each point is in exactly **n** images)

Fusing the DSMs of image pairs

- **§** Run Match-T on every possible image pair (within each strip; or across strip)
- s e.g. forward lap 80% à pairs with 80%, 60%, 40% and 20% overlap
- § Match-T returns point cloud PTS
- § Interpolation of PTS to yield congruent DSMs

Stack of n DSMs (one for each image pair)

à Fusion of n DSMs: median, standard deviation (sigMAD)

Comparison: Match-T-direct vs. Fusion

Comparison: Match-T-direct vs. Fusion

Comparison: Match-T-direct vs. Fusion

Fusion: number of DSMs (i.e. image pairs)

Munich: image GSD 10cm, Grid 25cm

Munich: image GSD 10cm, Grid 10cm

Munich: image GSD 10cm

Munich: Hardware & Runtime

- § Processor: Intel Core i7 CPU, 3GHz, 8 cores; Memory: 8GB;
 15 images on net drive
- § Processing times for grid width = GSD = 10cm

	Fusion (all)	Fusion (minimum)
In strip: 20%	3 pairs	
In strip: 40%	6 pairs	
In strip: 60%	9 pairs	9 pairs
In strip: 80%	12 pairs	12 pairs
Across strip: 60%	5 pairs	
Across strip: 80%	10 pairs	
Matching*	19 h	10 h
Import++	5 h	3 h
Gridding++	29 h	14 h
Fusion++	4 h	3 h
Software used: * Match-T ++ Opals		

Vaihingen: Hardware & Runtime

- § Processor: Intel Core i7 CPU, 3GHz, 8 cores; Memory: 8GB;
 36 images on net drive
- § Processing times for grid width = GSD = 20cm

	Fusion (all)	No Fusion (= Match-T direct)
In strip: 20%	30 pairs	
In strip: 60%	33 pairs	
Across strip: 20%	12 pairs	
Across strip: 60%	24 pairs	
Matching*	23 h	4 h
Import++	5 h	1 h
Gridding++	23 h	7 h
Fusion++	10 h	

Conclusion

- § Match-T: dense Matching ~ SGM
- § Match-T direct: very fast, but no multi image matching
- **§** Pseudo multi image possible by pair wise matching and DSM fusion
- § Details of fusion are subject of future research:
 - selection of pairs with which overlap(s)?
 - only within strip, or also across strip?
 - method of fusion in city areas?
 - All above not necessary, because Inpho comes up with own fusion method?
- § Grid width == GSD not useful, factor 2 or 3 seams appropriate
- § Take care of homogenous image overlap! à use 75%, 80%, ...

Vaihingen: image GSD 20cm, Grid 20cm

Vaihingen: image GSD 20cm, Grid 50cm

Vaihingen: number of DSMs (i.e. image pairs) 12

Vaihingen: image GSD 20cm, Grid 50cm (Match-T direct)

