2nd EuroSDR Workshop
 High Density Image Matching for DSM Computation

Results from Participant: TU Vienna

Dr. Camillo Ressl
car@ipf.tuwien.ac.at

Department of Geodesy and Geoinformation
Vienna University of Technology
www.geo.tuwien.ac.at

Software used: Match-T 5.5

B Cost based Matching (CBM) similar to SGM
B Default: matches every $3^{\text {rd }}$ pixel (also every $1^{\text {st }}$ or $2^{\text {nd }}$ possible)
B Match-T itself matches only one image pair for each XY-location

- BUT: the error of the 3D point decreases with the number of rays:

Using >2 overlapping images increases:

- accuracy
- reliability
- completeness
- Exploit high image overlap using Match-T by matching overlapping image pairs and fusion of the pair wise matched DSMs

Layout of overlapping images

forward/side overlap: 60\% / 60\%

inhomogeneous coverage: 7 or 15 pairs
forward/side overlap: 80\% / 50\%

homogeneous coverage: 14 pairs
use overlap (n-1)/n (e.g. 50\%, 66\%, 75\%, 80\%,...) to get homogeneous coverage (i.e. each point is in exactly \mathbf{n} images)

Fusing the DSMs of image pairs

B Run Match-T on every possible image pair (within each strip; or across strip)
B e.g. forward lap $80 \% \ddagger$ pairs with $80 \%, 60 \%, 40 \%$ and 20% overlap
B Match-T returns point cloud PTS
B Interpolation of PTS to yield congruent DSMs

Stack of n DSMs (one for each image pair)

Comparison: Match-T-direct vs. Fusion

Comparison: Match-T-direct vs. Fusion

Comparison: Match-T-direct vs. Fusion

Add on: Standard Deviation of Fusion

Fusion: number of DSMs (i.e. image pairs)

Munich: image GSD 10cm, Grid 25cm

Munich: image GSD 10cm, Grid 10cm

Munich: image GSD 10cm

Munich: Hardware \& Runtime

B Processor: Intel Core i7 CPU, 3GHz, 8 cores; Memory: 8GB; 15 images on net drive
B Processing times for grid width $=G S D=10 \mathrm{~cm}$

	Fusion (all)	Fusion (minimum)
In strip: 20\%	3 pairs	
In strip: 40\%	6 pairs	
In strip: 60\%	9 pairs	9 pairs
In strip: 80\%	12 pairs	12 pairs
Across strip: 60\%	5 pairs	
Across strip: 80\%	10 pairs	
Matching*	19 h	10 h
Import++	5 h	3 h
Gridding++	29 h	14 h
Fusion++	4 h	3 h
Software used: * Match-T ${ }^{++}$Opals		

Vaihingen: Hardware \& Runtime

B Processor: Intel Core i7 CPU, 3GHz, 8 cores; Memory: 8GB; 36 images on net drive
B Processing times for grid width $=G S D=20 \mathrm{~cm}$

	Fusion (all)	No Fusion (= Match-T direct)
In strip: 20%	30 pairs	
In strip: 60%	33 pairs	
Across strip: 20%	12 pairs	
Across strip: 60%	24 pairs	
Matching*	23 h	4 h
Import++ *	5 h	1 h
Gridding++	23 h	7 h
Fusion++	10 h	

Software used: * Match-T
++ Opals

Conclusion

B Match-T: dense Matching ~ SGM
B Match-T direct: very fast, but no multi image matching
B Pseudo multi image possible by pair wise matching and DSM fusion
B Details of fusion are subject of future research:

- selection of pairs with which overlap(s)?
- only within strip, or also across strip?
- method of fusion in city areas?
- All above not necessary, because Inpho comes up with own fusion method?

B Grid width == GSD not useful, factor 2 or 3 seams appropriate

B Take care of homogenous image overlap! \ddagger use $75 \%, 80 \%, \ldots$

Vaihingen: image GSD 20cm, Grid 20cm

Vaihingen: image GSD 20cm, Grid 50cm

Vaihingen: Standard Deviation of Fusion

Vaihingen: number of DSMs (i.e. image pairs)

12

7

Vaihingen: image GSD 20cm, Grid 50cm (Match-T direct)

