

Photogrammetry with Oblique Camera Systems

Challenges and Solutions

Dr. Konrad Wenzel nFrames

About us

» Company history

- Initiated 12/2012 as spin-off from the Institute for Photogrammetry, University of Stuttgart
- Since 10/2014 independent company nFrames GmbH
- Currently team of 14 people
- Financed exclusively by revenues
- Close connection to Universities and cutting edge research

» Products & Services

- Core product "SURE" + SDKs
- Consulting services

Values

PRECISION

ACCURATE AND SHARP.

PERFORMANCE

GET YOUR RESULTS FASTER.

USABILITY

AS EASY AS YOU NEED.

Values

Selected Customers & Partners

(...)

DSM

True Orthophoto

din .

Projection on the DSM

Traditional Orthophoto

SURE True Orthophoto

True Orthophoto

True Orthophoto

DSM Pointcloud

Dense 3D Point Clouds

Challenge: 3D Point Cloud Filtering

Aler 2 Tra Mep-Dataset courtesy of FBK Char

Challenge: Radiometry

- Data acquisition: Ortho vs. Dense Matching
 - Visual appearance <> Pixelwise Photogrammetry
 - Signal to Noise ratio in radiometry of every pixel is relevant

Image Credits: http://www.doctordisruption.com/design/principles-of-design-58-signal-to-noise-ratio/

Weak Signal-to-Noise and De-Bayering effects

Histogram equalizing on

RGB Image (+equalized)

Mesh Texturing

Automatic seam leveling

Texturing – Consistency Check

Texture Sharpening

Challenge: Data delivery

Meshes

Streaming

Web

Native Cesium tileset support

DON

2

6

Texture Compression

- New texture image (atlas) packing
- New texture compression
- → Up to 6 times less storage

Challenge: Editing

Focus: Automatic data extraction

+

Option for efficient editing if needed

as upselling option or for objects of interest

Challenge: Productivity

† quality↓ flight lines

Flight planning - Objectives

Productivity

- Minimal amount of flight lines
- Efficient processing
 - As less manual editing as possible

Nadir imaging – countrywide production

- » Automatic products
 - DSM
 - True Ortho
 - Textured DSM Mesh
- » High production efficiency
 - Flight efforts
 - Image count
 - Processing time DSM & True Ortho:
 - 0.4h/km² @ 20cm GSD
 - 0.7h/km² @ 10cm GSD

City capturing

» Nadir

- 80% Forward overlap
- Higher sideward overlap recommended
 - 60% common buildings, 80% skyscrapers

» Oblique

- Maintain Nadir overlap
 - Resolve street occlusions + enable True Ortho
 - Additional oblique views for façade observation

Oblique imaging

» Medium frame camera systems

- Typically Maltese Cross configuration
- >= 5 camera heads, Bayer pattern
- Different camera tilts 30° vs. 45°
- Current examples:
 - Leica RCD 30 / CityMapper
 - IGI UrbanMapper
 - Microsoft Osprey
 - Track'Air MIDAS systems

» Small frame camera systems

- Rigs of large amounts of cameras
- Sweeping systems, such as the VisionMap A3

Oblique imaging – typical flight planning

- » Lead parameter:GSD and Overlap in Nadir frame
- » Oblique GSD defined in image center 🔹
- » Oblique overlap defined along center line in flight direction

Challenge: Perspectives & Occlusions

- » Occlusions
- » Perspective distortions
- » Insufficient overlap

BB

119

....

Strong displacements – perspective distortions

Flight planning - Solutions

- 1) Carry out flight planning at two levels
 - Minimum (1) and maximum (2) ground level
 - Overlap !>= 75%

Flight planning - Solutions

2) Consider building lean in Central Image Contribution Area

- considering camera & max. building height
- the area between overlaps ($80\%/30\% \rightarrow 20\%/70\%$ central area)
- Determine occlusion in effective pixels (minimize to <30)

Challenge: Oblique Aerotriangulation

- » Much more challenging than for Nadir datasets
 - in particular connection between oblique and nadir strips
- » Key challenge: tie point matching
 - classic tie point matching requires high quality initial Eos (initial search radius)
 - or robust feature points with descriptors needed
 - Good distribution
 - Robust to change in illumination, rotation, scale and perspective distortion
- » Dataset should have good redundancy
 - Overlap, occlusions and perspective changes should be considered

Challenge: Customization

Advanced workflows Integration with third-party tools

Custom Workflows

Geometry correction for better True Orthos by using the 2.5D Tool for any point cloud here: automatic replacement of water points

Integration of further point cloud sources

Integrate & Combine

- » Edited point clouds
- » Point clouds from other sensors
 - E.g. LiDAR
- ➔Improved completeness
- ➔ Compensation of occlusions
- ➔ Compensation of texture issues

Gottfried Mandlburger, Konrad Wenzel, Andrea Spitzer, Norbert Haala, Philipp Glira and Norbert Pfeifer (2017): IMPROVED TOPOGRAPHIC MODELS VIA CONCURRENT AIRBORNE LIDAR AND DENSE IMAGE MATCHING, PhotoGA 2017

LiDAR & Dense Image Matching

Mandlburger et al, 2017

- Parks

LiDAR & Dense Image Matching interpolated

Mandlburger et al, 2017

Le prodette

LiDAR and Dense Image Matching DSM Mesh

Mandlburger et al, 2017

True Ortho - Dense Image Matching only

1 1 k has

Mandburger et al; 201

Line

-

True Ortho - LiDAR and Dense Image Matching

115 6

Mandburger et al, 201

-

