



# UAS PHOTOGRAMMETY WITH OBLIQUE IMAGES AND FISH EYE CAMERAS: FIRST EXPERIMENTS AND PRELIMINARY RESULTS

Diana Pagliari, Daniele Passoni, Livio Pinto

Department of Civil and Environmental Engineering
Geodesy and Geomatics Section
Politecnico di Milano



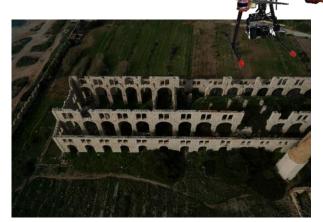
### OUTLINE

- Open issues for use of oblique cameras in UAS photogrammetry
- PoliMI test
  - Block configurations
  - Fish-eye camera calibration
- Conclusions
- Future Developments



# **BENCHMARK SIFET**

- SIFET 2017 National Conference → Special Benchmark session on the use of UAS images for 3D modelling
- Comparison among different software capabilities and processing workflow
- Composition of the dataset:


• 3 different UAS image datasets for "Fornace Penna"



Parrot Bebop 2 Camera sensor: Fisheye Sunny



DJI Phantom 4
Camera sensor: embedded camera



FlyTop Flynovex Camera sensor: Sony Alpha a6000

# **POLIMI TEST WITH BEBOP 2**

# Open issues:

- Use of oblique images in commercial close range photogrammetric software packages
- Influence of the acquisition scheme on the final accuracies (i.e. crossed flight, N-S direction, W-E direction etc.)
- Influence of different GCP configurations
- Management of fish-eye distortions

The results have been evaluated in terms of residuals on the CP and comparing the final 3D model with a reference scanned Point Cloud



## **BEBOP 2**

### Technical data

- Weight: 500 g
- Dimensions: 38.2 x 32.8 x 8.9 cm
- Maximum Speed: 60 km/h
- Maximum Altitude: 150 m
- GNSS mode: GPS/GLONASS
- Gimbal control: from -90° a 0°
- Flight autonomy: 25 min
- Controlled by mobile devices (smartphone and tablets)
- Max range: 2 km (Wi-Fi: 300 m)
- Cost: from 500 €



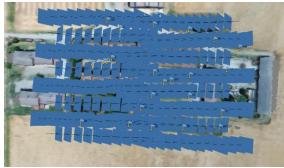


# **TEST AREA: CARATTA FARM (1)**

The UAS test flight has been realized over a farm located near Piacenza

- GSD: 0.03 m
- 3D scanning of the buildings with Leica Ms60






# **TEST AREA: CARATTA FARM (2)**

Realization of different flights (2 missions)

- → different processing of the photogrammetric block
- Crossed strips
- N-S direction
- E-W direction





Subsampled (1 strip every 2)





# FISH EYE LENS DISTORTIONS (1)

According to Barazzetti et al. (2017) commercial photogrammetric software packages implement different mathematical models for image orientation

• Pix4D 
$$\rightarrow$$
 equidistant model  $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} C & D \\ E & F \end{bmatrix} \begin{bmatrix} \rho X/\sqrt{X^2 + Y^2} \\ \rho Y/\sqrt{X^2 + Y^2} \end{bmatrix} + \begin{bmatrix} c_x \\ c_y \end{bmatrix}$   
• Photoscan  $\rightarrow$  equidistant projection 
$$x = \frac{f}{\sqrt{\left(\frac{X}{Y}\right)^2 + 1}} arctg\left(\frac{\sqrt{X^2 + Y^2}}{Z}\right) + c_x + \Delta x$$
• Photoscan  $\rightarrow$  equidistant projection 
$$y = \frac{f}{\sqrt{\left(\frac{X}{Y}\right)^2 + 1}} arctg\left(\frac{\sqrt{X^2 + Y^2}}{Z}\right) + c_y + \Delta y$$

 Problem with the Photoscan model → image correction in order to use the standard "frame camera model"



# FISH EYE LENS DISTORTIONS (1)

- 1. Creation of a mask (C= F= radius 2200 pixel) based on Pix4D model
- 2. Use of masked images in Photoscan coupled with

standard frame camera model (Brown distortion model) whose parameters has been estimated in Matlab

3. Refinement of IO parameters using self-calibration



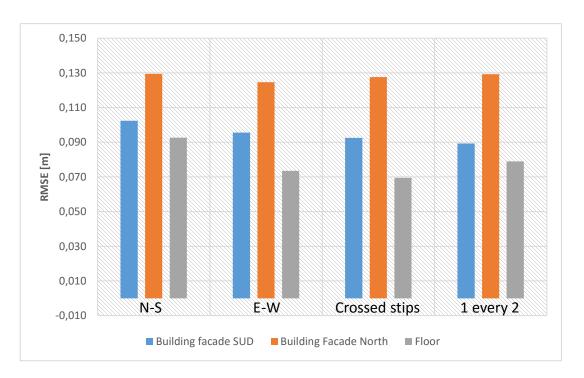


# **RESULTS – BUNDLE BLOCK ADJUSTMENT**

 The quality of the photogrammetric solution has been evaluated in terms of RMSE of the CP

| RMSE             | N [m] | E [m] | h [m] | Total Error [m] |
|------------------|-------|-------|-------|-----------------|
| Crossed strips   | 0.018 | 0.020 | 0.014 | 0.030           |
| N-S              | 0.020 | 0.023 | 0.037 | 0.047           |
| W-E              | 0.023 | 0.015 | 0.016 | 0.030           |
| 1 strips every 2 | 0.018 | 0.014 | 0.008 | 0.024           |






# **RESULTS: COMPARISON WITH POINT CLOUDS**

 3D Point Clouds acquired with Leica MS 60 in the same geodetic network

Comparison using Cloud Compare 3MC2 distance

plugin





### CONCLUSIONS

- Commercial photogrammetric software can manage oblique images with some adjustments
- Problems with Photoscan embedded fish-eye camera model → solved using masked images
- Final accuracy of the photogrammetric model in the order of 1.5 GSD (<0.05 m) for all the considered block configuration
- Differences between the photogrammetric point clouds and the MS 60 laser scanning in the order of 0.15 m



### **FUTURE DEVELOPMENTS:**

- Use a different approach for image distortion correction
  - Camera calibration with Matlab Camera calibration Toolbox
  - Creation of undistorted images directly in Matlab
  - Use of undistorted images with standard frame camera model
  - Refinement of IO parameters using self-calibration











# **THANKS FOR YOUR ATTENTION!**

