ISPRS / EuroSDR Workshop on "Oblique aerial cameras – sensors and data processing"
Barcelona, 10 October 2017

Oblique aerial imagery in the praxis: applications and challenges

<u>Daniela Poli</u>, Kjersti Moe, Klaus Legat Terra Messflug GmbH, Imst, Austria Vermessung AVT ZT GmbH, Imst, Austria

Outline

- Introduction on TM/AVT
- · Demand in the market
- · Requirements analysis
- Applications
- Challenges and open issues
- Conclusions

Vermessung AVT-ZT-GmbH

Vermessung AVT GmbH

- Mapping company founded in 1970, head-office in Imst, (Tirol, Austria), about 70 employees
- Activities: cadaster, topography, geodesy, photogrammetry, aerial and terrestrial laser scanning, geoinformation

Terra Messflug

- 100% subsidiary of Vermessung AVT
- Focused in nadir and oblique aerial digital image acquisition and processing
 - Aircraft: Cessna T303
 - Optical sensor: UltraCam Eagle Mark2, UltraCam Osprey Prime

ISPRS / EuroSDR Workshop Oblique Aerial Cameras

Introduction

- AVT in oblique market since 2015
- Small, medium and large projects in EU
- **GEOBLy** project in collaboration with FBK (Trento, Italy) for:
 - Investigations on sensor geometries, image orientation and 3D surface reconstruction
 - Design and implementation of ad-hoc tool for mapping in oblique images.

ISPRS / EuroSDR Workshop Oblique Aerial Cameras

.

Introduction

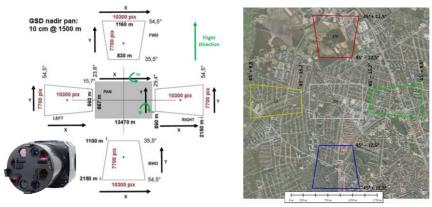
VOLTA EU Marie Skłodowska--Curie RISE project:

- Know-how and experience exchange in the field of geospatial data production, investigation and usage between universities, research centres, sensor producers, service providers and mapping agencies
- Topics:

Aerial

• Automatic metric information from images

- Fusion of heterogeneous data coming from various sensors
- imagery 2D and 3D geospatial data segmentation
 - Processing of large geospatial datasets in the Cloud



ISPRS / EuroSDR Workshop Oblique Aerial Cameras

Equipment and software

Aerial oblique camera: Vexcel Ultracam Osprey Mark3p

Focal length: 80mm (nadir) 120 mm (oblique)

Image size: 13,470 x 8,670 pixels (nadir), 10,300 x 7,700 pixels (oblique)

SW: UltraMap, Inpho Match-AT, nFRAMES SURE, Geobly, OrbitGT

ISPRS / EuroSDR Workshop Oblique Aerial Cameras

Selection of results (Imst)

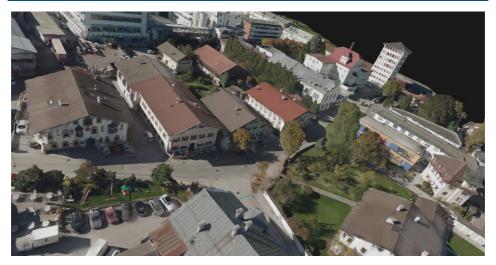
Generation of point clouds using only nadir images (N) and nadir + oblique images (N+O).

The qualitative comparison of the clouds and automatic models highlights the significant improvement on the reconstruction of the building façades and roof structures when the oblique images are added.

Selection of results (Bergamo)

Bergamo, N point cloud ISPRS / EuroSDR Workshop Oblique Aerial Cameras

Selection of results



Bergamo, N+O point cloud

ISPRS / EuroSDR Workshop Oblique Aerial Cameras

Selection of projects (Kundl)

Kundl, textured mesh

Customers & Demands

Image quality
Presentation quality
Format of delivery
Integration
Scopes
Orientation quality

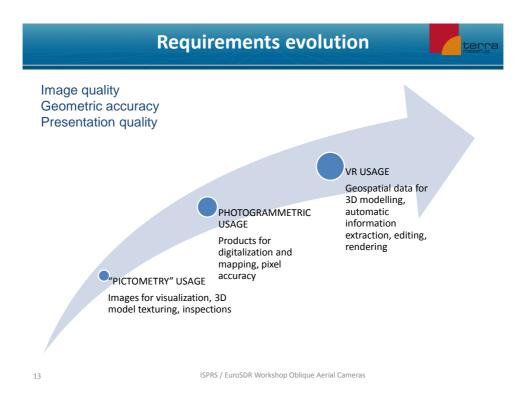
11

ISPRS / EuroSDR Workshop Oblique Aerial Cameras

Customers & Demands

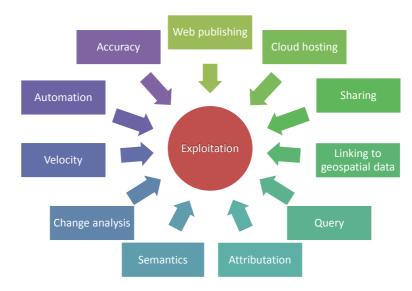
Image quality

Presentation quality


Format

Integration

Scopes


Orientation quality

12

Requirements for Exploitation sw

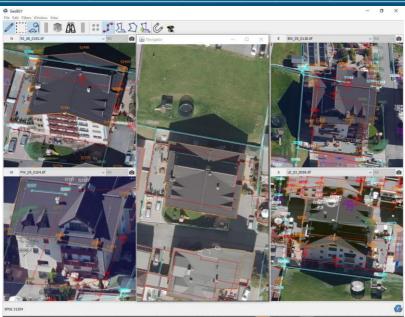
ISPRS / EuroSDR Workshop Oblique Aerial Cameras

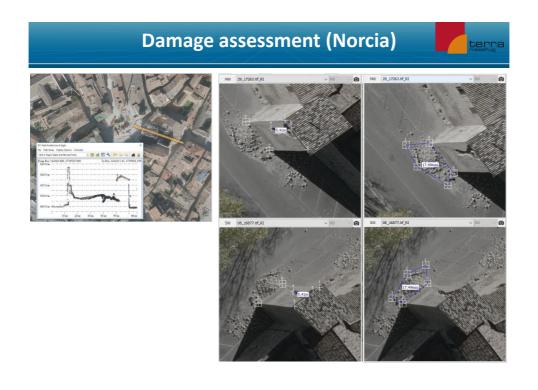
What do our clients do with the oblique data

...that they didn't do with their nadir data

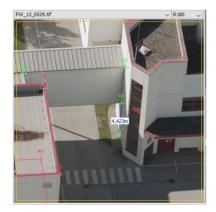
Building inspection

- Survey number of floors
- Fire rules control
- Building height measurements
- State of building
- Footprint digitalization




ISPRS / EuroSDR Workshop Oblique Aerial Cameras

3D building mapping



More applications

Clearance height measurements

Vertical signal mapping

ISPRS / EuroSDR Workshop Oblique Aerial Cameras

19

More applications

Inspection of power lines and constructions

Facility management

ISPRS / EuroSDR Workshop Oblique Aerial Cameras

More applications

VR integration

Analysis – view sheds, noise pollution, solar potentials

21

ISPRS / EuroSDR Workshop Oblique Aerial Cameras

Challenges - geometry

- Image orientation:
 - High quality in object space
 - Physical model not necessarily complete
- DIM & 3D modelling
 - Modelling of roof borders
 - Combination with other approaches (i.e. mathematic morphology)
 - Visibility and modelling in very narrow streets
 - Integration with other platforms, e.g. mobile mapping systems in very narrow streets
 - Computing optimization

22

Challenges – radiometry & exchange

- Level of quality of nadir and oblique images
 - Different levels, but quality of tools for oblique image processing area rapidly increasing
- GIS integration
 - Slow implementation of oblique imagery in conventional GIS
 - · Solutions are still basic
 - Stand-alone or simple add-on, lack of integration
 - Expensive
 - Tailored solutions for specific projects
- Full integration for measurement in oblique images
 - Currently stand-alone viewer solutions, image formats partly not transparent
- Integration of mesh & mesh interactions
 - Currently uncoordinated implementation of mesh integration

23

ISPRS / EuroSDR Workshop Oblique Aerial Cameras

Conclusions

- Awareness of oblique imagery potential is growing in private and public entities
- Positive feedback by customers using oblique imagery
 - Cost reduction of field work (mapping)
 - Time reduction (mapping)
 - Different building perspectives
 - Occlusion reduction (min. 6 images for each object)
 - Accessibility to whole area
 - All-time image availability
- · Requirements are more demanding but challenging
 - Quality, interaction, sharing

Thank you for your attention!

24