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Abstract

The scientific and technological development that happened in the second half
of the twentieth century led to new tools, techniques, and technologies that
forced many scientific disciplines to renovate, introducing and adapting these
advances to the classical techniques to meet the new needs of society. The
development of optics and sensors capable of taking information from various
regions of the electromagnetic spectrum, the launching of satellites, and
advances such as laser systems are contributions that have gradually been
included in remote sensing works. Recent times have highlighted the importance
of pattern recognition techniques in classification procedures and information
extraction tasks in engineering, computer science, or mathematics issues. To
certain sciences, such as remote sensing, these techniques are particularly
important because they allow automatic cartographic entities detection and
classification processes. Carrying out these procedures manually would be too
expensive and time-consuming because of the high volume of remotely sensed

information currently available.

The research works presented in this thesis are the result of the integration of
data recorded by remote sensing measurement sensors and pattern recognition

techniques. The final goal of the current research is to develop automatic and



semi-automatic methodologies to accomplish the cartographic entities extraction
processes. These studies are of greatly complexity due to the varied casuistry of
cartographic entities and heterogeneity of the input data. It is a challenge to
develop functional, robust, and automatic algorithms. It seems logical that
proper geographic features detection will be useful for urban planning, regional
planning and decision-making in geography. This thesis aims to make
contributions to the automatic creation and updating of databases land covers
and street furniture inventories. Among the major contributions of this work are
included the development of a series of methodologies capable of detecting
entities such as artificial water surfaces, roadsides, trees, and street furniture

from multispectral aerial images and LIDAR, both aerial and mobile.

These contributions have resulted in the publication of four articles in scientific
impact journals. This thesis, presented in an article compendium format,
includes the four published articles. Each paper describes the investigations
carried out and includes a state of the subject’s current art, an explanation of
the implementation and operation of the developed algorithms, an evaluation
and discussion about the achieved results, and an analysis of the reached

conclusions.

Keywords: remote sensing, pattern recognition, LIDAR, aerial/satellite images,

land cover database, urban furniture inventory
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Resumen

El desarrollo cientifico y tecnolégico acontecido en la segunda mitad del siglo
XX dio lugar a nuevas herramientas, técnicas y tecnologias que obligaron a
muchas disciplinas cientificas a renovarse, introduciendo y adaptando estos
avances a las técnicas cldsicas con el objeto de satisfacer las nuevas necesidades
de la sociedad. El desarrollo de 6pticas y sensores capaces de tomar informacién
en varias regiones del espectro electromagnético, la puesta en 6rbita de satélites
o avances como los sistemas de medida ldser han sido algunas de las
aportaciones que paulatinamente se han ido incluyendo en los trabajos de
teledeteccién. En los tiltimos tiempos se ha puesto de manifiesto la importancia
de las técnicas de reconocimiento de patrones en labores de extraccién y
clasificaciéon de informacién en procesos de ingenierfa, ciencias de la
computacién o matemdticas. En algunas ciencias como la teledeteccion estas
técnicas son de especial importancia ya que permiten automatizar procesos de
deteccién y clasificacién de entidades cartogrificas que, de realizarse
manualmente, tendrian un coste inasumible en términos econémicos y
temporales dado el elevado volumen de informacién geoespacial actualmente
disponible.

Los trabajos de investigacién que se presentan en esta tesis son el fruto de la

111



integraciéon de datos registrados por sensores remotos y técnicas de
reconocimiento de patrones. El objetivo tltimo es el desarrollo de metodologias
lo mds automdticas o semiautomdticas posible que permitan automatizar los
procesos de extraccion de entidades cartogrificas. Por lo general estos trabajos
presentan gran complejidad dada la variada casuistica de las entidades
cartogréficas y la heterogeneidad de los datos de partida, lo que supone un reto
a la hora de elaborar algoritmos funcionales, robustos y automadticos. Parece
l6gico que la adecuada deteccién de entidades cartogrificas serda de utilidad en
aplicaciones como la planificacién urbanistica, la ordenacién del territorio o la
toma de decisiones en el ambito de la geografia. Esta tesis pretende realizar una
serie de contribuciones a la automatizacién en la creacién y actualizacién de
bases de datos de coberturas del terreno e inventarios de mobiliario urbano.
Entre las principales aportaciones de este trabajo se encuentran el desarrollo de
una serie de metodologias capaces de detectar entidades tales como ldminas de
agua artificiales, bordes de carretera, arbolado y mobiliario urbano a partir de
imdgenes aéreas multiespectrales y datos LIDAR, registrados tanto por sensores
aéreos como moviles terrestres. Dichas aportaciones han culminado con la
publicacién de cuatro articulos en revistas cientificas de impacto. En esta tesis,
a la que se ha dado el formato de compendio de articulo, se incluyen los
articulos tal como han sido publicados. En ellos se detallan cada una de las
investigaciones realizadas. Cada articulo incluye un estado del arte actual de la

materia de estudio, se explica la implementacién y funcionamiento de los



algoritmos desarrollados, se evalian y discuten los resultados obtenidos y se

analizan las conclusiones alcanzadas.

Palabras clave: teledeteccién, reconocimiento de patrones, LIDAR, imégenes

aéreas / satélite, coberturas del terreno, mobiliario urbano
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CHAPTER 1

Introduction

How many roads must a man walk down
before you call him a man?

How many seas must a white dove sail

before she sleeps in the sand?

Yes, how many times must the cannon balls fly
before they're forever banned?

The answer my friend is blowin' in the wind

The answer is blowin' in the wind.

Bob Dylan

This first chapter introduces the reasons that have led to the development of
the research showed in the following chapters and the objectives of the current
investigation. Additionally, it highlights the general thesis structure and briefly
summarizes the state of the art to provide a general idea of the thesis’s work

content.



Chapter 1 — Introduction

1.1. Motivation

Recently, remote sensing data have become common and accessible for users.
Also, the information they provide has a high level of detail and precision,
thanks to sophisticated sensors and airborne platforms. Aerial images and
orthophotos recorded by satellites or aerial platforms enable geospatial
information professionals to perform geological, environmental, or cartographic
studies without costly and laborious fieldwork. The use of this data is
widespread, and its use has been driven by advances in different fields, such as
optics and electronics. These advances allow the creation of sensors capable of
taking information with very high spatial and spectral resolutions. The use of
active remote sensing systems based on laser scanner technology (LIDAR, Light
Detection and Ranging) and radio measurements (RADAR, Radio Detection
and Ranging) has been successfully accepted as a complement to classical
remote sensing 2D data. Laser scanner sensors are capable of measuring
altimetric information by providing 3D point clouds, which is an information

piece that aerial imagery do not include, at least in an immediately way.

Laser scanner sensors can be installed both in aerial (Aerial Laser Scanner,
ALS) or terrestrial platforms (Terrestrial and Mobile Laser Scanner, TLS and
MLS respectively). In any case, the final product is a dense point cloud that
provides 3D information (z, y, 2z coordinates) of all those points of the terrain
where the laser pulse emitted from the scanner is reflected. Continuous
developments and advances in laser scanner sensors in terms of speed capture,
spatial accuracy, and point density incrementally increased the use of 3D point
clouds in topographic and photogrammetric applications. Remote sensing data,
both in image or point cloud format, have significant advantages, including not
having to be in direct contact with the studied objects, the high speed of data
acquisition in large regions, and the possibility of repeating the measurement at
different times, thereby obtaining multi temporal information of the studied

scene.

(S



Chapter 1 - Introduction

However, a huge amount of multi-temporal information with high spatial and
spectral resolution can hinder the treatment and supervised processing of the
registered information. This is the remote sensing's big data problem: large
amounts of available geospatial data are difficult to process by man-made
techniques. For this reason, it is necessary to develop methodologies that
automate the treatment and processing of remote sensing big data and allow
cartographic entities detection and classification as automatically as possible.
Thus, the developed procedures included in this thesis work provide a robust
and accurate solution for the extraction and classification of land covers and

urban furniture from multispectral imagery and 3D ALS and MLS point clouds.

1.2. Research Objectives

The main purpose of the research showed in this thesis work is the development
of methods and algorithms for the segmentation, extraction, and automatic
classification of cartographic entities from both aerial and satellite multispectral
images and 3D point clouds registered by ALS and MLS. The development of
post-classification methods to improve the accuracy of classification algorithms

is another goal of the current research.

The accuracy and effectiveness of the developed methods for land cover
extraction, classification, and post-classification have been tested with
satisfactory results in synthetic, aerial, and satellite images with different spatial
and spectral resolutions. The methods developed for urban street furniture
extraction have been tested in datasets representing different urban settings and
registered by various measuring equipment. This testing has been done to verify
the effectiveness and robustness of the developed methods in datasets recorded
by sensors with different characteristics and in urban areas with different
configurations and types of street furniture. This variety and heterogeneity of
the input data and studied areas allow accurate testing of the performance of
the developed methodologies in measurements with different casuistry. An effort

has been made to automate the operation of every developed algorithm in order



Chapter 1 — Introduction

to minimize the user intervention. Thus, the main contribution of this research
is the development of methods to automatically detect and classify urban
features from remotely sensed data. From aerial geospatial information (both
images and ALS), two pipelines are proposed. One is focused on the detection
and classification of man-made water surfaces, and the other consists of an
algorithm aimed at improving classification procedures through a post-
classification method based on contextual information. Regarding MLS 3D point
clouds, a pipeline has been developed for road boundaries detection and
estimation and another method for vertical urban furniture and trees extraction
and classification. The following chapters explain the developed methods in

detail.
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1.3. Thesis Structure

The research presented in this thesis work is a compendium of four articles that
have been published in different peer-reviewed scientific journal contained in the
Journal Citation Report (JCR). These journals are included in disciplines such
as Remote Sensing, Construction and Building Technology and Photographic
Imaging Science & Technology. These articles detail the methodologies
developed to extract and classify cartographic entities (such as land covers and

urban furniture) from geospatial information, mainly aerial and satellite images

and 3D point clouds recorded by ALS and TLS.

This thesis work is divided into five chapters: the first one is an introduction to
the research subject: remote sensing science, geoscience data and products,
pattern recognition, and image classification algorithms. In the following
chapters 2, 3 and 4 the methods developed during the realization of this thesis
work that have resulted in the publication of four articles in scientific journals
are detailed. Every chapter includes a brief summary of the conducted research
as well as its quality indicators, besides the full paper as it has been published
in a scientific JCR journal. Finally, in the 5™ chapter both general and
particular conclusions and dissertations reached during the course of this thesis
work are collected. Besides, it is detailed the lines of work that further research

will follow.

ot



Chapter 1 — Introduction

1.4. Introduction to Remote Sensing Data, Remote Sensing

Products and Pattern Recognition Techniques

This chapter introduces the main research topics presented in this thesis and
briefly describes both remote sensing data and products as well as pattern
recognition techniques. Through a better understanding of the science that
underlies both fields (remote sensing and pattern recognition), a series of
methods aimed at cartographic entity extraction and classification from remote

sensing data have been developed.

1.4.1. Cartographic Science

The human need to graphically depict the surrounding world has made mapping
and cartography, from their origin, closely linked to social, economic, and
military activities. Cartography was first used in surveying applications to
control river floods in rainy seasons. Nowadays, it is used in such diverse
applications as the study of population flows [1], meteorology [2], or urban
planning [3]. According to the International Cartographic Association (ICA,
1996), mapping could be defined as the set of studies and scientific, artistic, and
technical operations, involved in the preparation, analysis, and use of letters,
drawings, maps, relief models, and other means of expression which represent
the earth, part of it, or any part of the Universe. The concept of mapping has
been used throughout history in different ways depending on the training and
knowledge of different map users. Mapping aims at the conception, preparation,
drafting, and implementation of cartographic documents. It includes all
necessary operations from the topographic survey carried out on the ground or

collecting written information until the final cartographic document [4].

Although cartography is linked to human history, it is difficult to pinpoint its
exact moment of origin. According to certain studies, it is believed that
cartography originated in Asia Minor and Mediterranean cultures. Since its

origin, the main objective of cartography has been to represent the “ecumene,”
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that is, the world known by the different cultures that have occupied our planet
throughout history. The birth of cartography as an applied science arises from
man's need to represent the world around him. The technique for making the
first maps consisted of simple, direct territorial observation and exploration.
Rudimentary and limited availability of measurement tools, along with
primitive graphics supports, meant early maps had low geometric and graphic
quality. Distances were measured by the length of travel, and maps were
produced manually on stone, parchment, or vellum, which made these early
maps a mere approximation of reality. Additionally, their distribution was very
limited. Scientific and technological advancements throughout history facilitated
cartographers’ work and represented an improvement in metrics and graphical
maps’ quality. The revolutionary ideas (introduced by Greek geographers such
as Thales of Miletus and Aristotle) of the Earth’s sphericity and the concepts of
an equator, tropics, and poles were gradually adopted by cartographers on maps
of that time. During the fifteenth century, the development of instruments to
measure angles and accurately calculate the altitude of the sun (and
consequently, latitude), such as the astrolabe, the quadrant, and the compass,
gradually gave mapping the metric rigor it hitherto lacked. Other developments,
such as the creation of printing and map projection systems [5], drove the
creation and distribution of cartographic material. More recently, technological
developments during the twentieth century in fields such as electronics,
mechaniecs, physics, and optics revolutionized both cartographic production and
map reading, enabling mass-produced maps that were easy to store, manipulate,
and interpret. Advances in electronic technology made monitors, printers, and
scanners available that facilitated access to mapping and simplified map

generation and distribution.

The evolution of these technologies increased user access to cartography and
o

provided cartographers with new tools to produce maps. However, one of the

main impetuses of cartographic production comes from aeronautics. The

development of aerial and satellite platforms capable of recording information
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on the Earth's surface from the air, along with the production of optical sensors
capable of taking in information from multiple bands of the electromagnetic
spectrum, has provided an unprecedented amount of information, previously
unthinkable. Most cartographic information is currently produced through
software that utilizes computer-aided geographical information systems (GIS)
design. Spatial information can be stored in databases. These tools have led to

increasingly dynamic and interactive maps that can be digitally manipulated.

Since its origin, cartographic production has been carried out from field
observation and inspection. The availability of geospatial information taken
from an aerial perspective facilitated the final leap toward generating detailed
mapping with high precision, both in terms of measurement and graphics.
Processing and analyzing remote aerial information led to the science of remote

sensing. Currently, this discipline is closely linked with cartographic production.

1.4.2 Remote Sensing

Remote sensing is the art and science of obtaining information about an object,
area, or phenomenon by analyzing the data captured by a device that is not in
contact with the studied element [6]. Remotely sensed information can be
recorded by optical, acoustic, or microwave signals [7]. Remote sensing makes
the measurement and study of dangerous and inaccessible areas possible. There
are many fields of study that utilize remote sensing, including meteorology,
agriculture, environmental analysis, or exploration of natural resources [8-10].
The research presented in this thesis focused on producing and updating maps
of the Earth’s surface from optical signals recorded by different remote sensing

SETISOTSs.

1.4.3 Remote Sensing Data

Despite early attempts to capture aerial images from diverse aerial platforms
such as balloons, kites, or even birds, it is generally accepted that modern

remote sensing emerged in the early twentieth century. The developing of
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airplanes and small satellites equipped with rudimentary cameras contributed to
remote sensing development. Aerial photography was advanced rapidly during
the First World War. It came up with the objective of monitoring and
recognizing territories and terrestrial targets. The development and evolution of
aerial and satellite platforms have allowed remote sensing information
measurement to be applied on a global scale. Nowadays, there are a large
number of remote sensing devices available. Depending on the manner in which
information is measured, remote sensing sensors are classified as active or
passive. Passive sensors measure electromagnetic solar radiation that is reflected
in land cover. On the other hand, active sensors emit artificial radiation and
measure the returning signal once it has interacted with the atmosphere and
land surface. Multi- and hyperspectral satellite and aerial imagery are in the
passive first group. RADAR and LIDAR sensors are classified as active. Both
aerial, satellite, and synthetic images and aerial and mobile LIDAR have been
used as input for the methodologies presented in this thesis. They have been
also used as a ground truth for checking the validity of the developed methods

and evaluating their accuracy.

1.4.3.1 Digital Image Data

An image is a visual representation that shows the visual appearance of a real
or imaginary object. Photography is the process of capturing images by exposing
them on light-sensitive material. A digital image is a numeric representation of
a 2D image. Raster images have a finite set of digital values, called picture
elements or pixels. The digital image contains a fixed number of rows and
columns of pixels. Pixels are the smallest individual elements in an image,
holding quantized values that represent the brightness of a given color at any
specific point. Typically, pixels are stored in computer memory as a raster
image or raster map, that is, a 2D array of digital values. These values are often
transmitted or stored in a compressed form. Digital images can be created by a

variety of input devices and techniques. Digital image processing is the study
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and use of computer algorithms to perform image processing on digital images.
It allows a range of algorithms to be applied to the input data to avoid typical

analog image problems [11, 12].
1.4.3.1.1. Aerial and Satellite Images

Most of the aerial and satellite imagery data acquired by sensors on aircraft or
spacecraft platforms are readily available in digital format. One of the main
advantages of digital data is that it can be processed by computer either for
machine-assisted information extraction or enhancement of its visual qualities to
make it more interpretable by a human analyst. Digital image properties used in
remote sensing are defined by measuring remote sensors characteristics,
essentially by spatial, spectral, and radiometric resolution [13]. Spatial
resolution is defined as the smallest angular or linear distance that a sensor can
measure. Because digital images store information in pixels (generally square
shaped), spatial resolution could be defined as the length of one side of a pixel
measured in the terrain. This resolution is determined by several factors, such
as the distance between the sensor and the measured object, the angle of vision,
or the instantaneous field of view (IFOV). Spatial resolution is usually
expressed in meters per pixel. Radiometric resolution can be defined as the
minimum amount of energy required to increase the digital level (DL) by one.
Radiometric range is the number of DLs that a sensor can discriminate between
and is usually expressed in bits per pixel. Radiometric resolution is comparable
to the gray tones in a black-and-white photograph as both are directly related
to the contrast [14, 15].

One of the most significant characteristics of image data in a remote sensing
system is the wavelength or range of wavelengths used in the image acquisition
process. That is, those wavelengths to which the sensor is sensitive. Every
surface has a characteristic response to electromagnetic radiation, allowing
different types of land cover to be identified through their spectral signatures.

Achieving this identification requires electromagnetic spectral information with

10
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sufficient detail in terms of length intervals and spectral range. Each spectral
range in which a sensor collects information is known as a spectral band or
channel. The spectral resolution of a sensor is expressed as the number of bands
in which it records information. Remote sensing sensors are classified into
multispectral and hyperspectral depending on the number of electromagnetic
spectrum-sensitive bands. Multispectral sensors are composed of a relatively low
number of bands (no more than 20), and these are not necessarily adjacent to
each other. These sensors register information from the electromagnetic
spectrum in a discreet manner. Meanwhile, hyperspectral sensors are formed by
a greater number of bands (several hundred), measuring a continuous spectral

signature.

Temporal resolution should also be taken into account in satellite sensors.
Temporal resolution is defined as the repetition cycle or the time between two
successive acquisitions of the same area. This resolution is important in those
works in which the evolution of certain phenomena is analyzed. It makes no
sense to speak of temporal resolution in airborne sensors as repeatability in

airborne remote sensing data depends on the flight planning.

Once the image is taken, either from an aerial or satellite platform, a series of
pre-processing procedures should be carried out to remove geometric and
radiometric distortion arising during the image’s capture. Radiometric
distortions affect the DL of each pixel and may be due to distortions, sensor
failure, or atmospheric effects. These effects are corrected with a number of
adjustments that modify the DL of the original image to approximate the values
that would have been obtained in ideal conditions. A detailed description of the
most common radiometric corrections can be found at [16]. Regarding geometric
corrections, these consist of a series of transformations aimed at moving from
image coordinates to coordinates in a global reference system. This
transformation is the process of georeferencing of the image [17]. Once these
corrections are carried out, aerial/satellite images are ready to be used in

remote sensing applications.
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1.4.3.1.2. Synthetic Images

Image processing software, like all software, needs to be both verified and
validated. A synthetic image is an artificial picture whose radiometric, spectral,
and geometric properties are perfectly known and defined by the user. This
knowledge enables users to generate images with specific characteristics, which
is useful during software development, to verify that the produced algorithms
are working properly. They can be used to test individual discrete functions as
well as complex chains of functions to verify that code segments are working

properly.

Regarding the validation methods, real images (both aerial and satellite) with
manually-labeled ground truth can provide a quantitative evaluation, but it
must be taken into account that the procedure of creating a ground truth is
costly in terms of time and money. Furthermore, man-made ground truth has
an inherent uncertainty level and sometimes different experts might label an
image slightly differently. This uncertainty is rarely quantified because it is very
labor intensive. With synthetic images it is possible to have an objective ground
truth that can be used for quantitative evaluation of a developed algorithm and

quantitative comparison against other methods.

1.4.3.2. Laser Scanner Sensors

In the last decades, advances in electronics, photonics and computer vision
made possible to construct reliable laser scanner sensors, providing the
possibility of measuring and processing dense point clouds in an efficient and
cost-effective way. Laser scanners measurement sensors use a lase ranging
instrument in order to capture and record geometry and textural information of
visible surfaces, acquiring dense range data to a high degree of accuracy. [18].
What a laser scanner does is basically measures the (z,y,2) coordinates of
millions of points, providing an accurate reconstruction of a real surface. There
are two main basics measurement methods for optically measuring a 3D surface:

time-of-flight measurement and triangulation. The measurement of the time
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delay caused by light waves, created by the scanner sensor and travelling with a
known velocity, moving from the source to a reflective target surface and back
to the light detector offers an efficient method of evaluating distance. This kind
of measurement is known as time-of flight or LIDAR (light detection and
ranging) systems. This measurement may also be achieved indirectly through
the phase measurement in continuous wave lasers. In this case, the range value
is derived by comparing the transmitted and received versions of the sinusoidal
waver pattern of this emitted beam and measuring the phase difference between
them [19]. The triangulation method is based on the cosine law by constructing
a triangle using a direction of illumination aimed at a reflective surface and a
direction of observation at a known distance, commonly referred as baseline,
from the illumination source. In both methods the acquisition of a 3D point
cloud with a single laser beam requires a mechanism to move the laser beam
over the surface of the measured object. There are a large number of different
scan mechanisms that have been used in laser scanning. Some of them are the
oscillating mirror, in which a swiveling mirror directs the laser pulse across the
swath, the rotating polygonal mirror, in which a rotating polygon mirror is used
for beam deflection or the glass fiber scanner, a type of mechanical scan made
with a number of glass fibers arranged in a linear array directed down at
ground. Depending on the platform in which the laser scanner is mounted, these
measurement sensors can be classified into two types: aerial and terrestrial laser

Scalliler.

1.4.3.2.1. Aerial Laser Scanner

Laser altimetry systems did not come into widespread use for precise
topographical mapping until the development of differential GPS, which allows
the scanner position to be known by horizontal and vertical coordinates with a
high level of accuracy. Until the end of the 1980s, range measurements were
done by laser profilers, but since the ‘90s profilers have been replaced by

scanning devices. Nowadays, airborne laser scanning is a powerful and common
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technique for generating high-quality 3D presentations of the landscape. The
measurement principle of airborne laser scanning is based on the combination of
two systems. One is the laser scanner sensor, which allows the measurement of
distances from the airplane to the field through a laser scanning terrain
illumination system. It is mounted on the fuselage of the airplane and
continuously measures the surface while the aircraft is in the air. The other
system consists of a GPS combined with an inertial measurement unit (IMU).
Differential GPS measures the position and flying height of the aircraft by
means of a GPS antenna mounted on the aircraft and at least one other GPS
antenna seated on a ground control station with known coordinates. The IMU is
responsible for measuring acceleration data (used to support the interpolation of
the platform position on the GPS trajectory) and rotation rates (used to
determine platform orientation). The combination of the laser scanner and
GPS+IMU provides 3D point clouds with densities between 0.2 and 50
points/m”. In addition to 3D coordinates, a LIDAR system also records the
intensity of the reflected laser pulses previously emitted and, for each of them,
can capture two or more echoes. Airborne laser scanners are sometimes
complemented by a digital camera taking images simultaneously with the laser
scanner, which provides spectral information to the point cloud. After a survey
mission there are three types of available datasets: IMU and airborne global
navigation satellite systems (GNSS) data, ground station GPS coordinates, and
ranging data. In processing the data, first the GPS and IMU data are integrated
with the ground station GPS to obtain the restitution of the flight path and its
altitude. Then, these datasets are processed with range measurements to obtain
the final 3D point cloud in a global coordinate frame. Some advantages of aerial
laser scanning systems are their ability to provide high measurement density
and high data accuracy regardless of the visibility conditions, with fast data
acquisition and minimum amount of ground support due to terrestrial work is

minimized. The main drawbacks are laser pulses’ limited ability to penetrate
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clouds, fog, and dense vegetation and to measure water and wet surfaces in

angles away from the nadir direction.

1.4.3.2.2. Terrestrial and Mobile Laser Scanner

Laser scanning sensors not only can be placed on aerial platforms, but also in
terrestrial stations. With regards to terrestrial laser scanning, two procedures
can be distinguished: the static mode, known as Terrestrial Laser Scanning
(TLS) and the kinematic mode, more commonly known as Mobile Laser
Scanning (MLS). In both cases a 3D point cloud is measured and parameterized
by 3D Cartesian coordinates. In the TLS mode the data collection is carried out
from a base station: the sensor is fixed to the base station from which the point
cloud is sensed. In this mode the point clouds refer to the respective station
coordinate systems; to merge different measurements into one unique point
cloud, they have to be properly registered and georeferenced. The main
advantage of this scanning mode is the high accuracy and spatial resolution
point clouds it can measure, whereas the principal drawback is the time-
consuming measurement of large areas. The MLS mode is carried out from a
sensor installed on a moving platform, typically a motor vehicle, train, or
trolley, which allows faster measurements over more extended regions than the
static mode. In MLS each observed scan point refers to an individual 3D
coordinate frame; to mathematically link all the systems in a unique spatial
reference system, the respective positions and orientations have to be observed
using adequate equipment based on GNSS and IMU devices. A mobile mapping
system is composed of a data capture unit consisting of laser scanners and
digital cameras, a positioning and navigation unit for spatial referencing, and a
time referencing unit. There are two main observation modes implemented in
MLS: the stop-and-go mode and the on-the-fly mode. In the stop-and-go
method, the scanner is mounted on a platform; the scans are taken in static
mode where the scanner position and orientation do not change. After each

scan, the vehicle changes its position and the next scan is taken. Thus, extended
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objects are scanned in consecutive steps. In the on-the-fly mode, the vehicle in
which the sensor is fixed is following a trajectory without stopping and the
sensor is scanning continuously. One of the main advantages of MLS sensors is

the efficiency, and hence the fast data capture, of extended objects.

1.4.4. Remote Sensing Products

Remote sensing measurement sensors register a large amount of geospatial
information, both in 2D and 3D format. This measured information is not
generally used in the same way in which it is recorded. It is subjected to various
treatments and processes to produce the final remote sensing products, with
applications in several fields of study. In the following subsections some of the

main mapping products generated from remote sensing data are detailed.

1.4.4.1. Digital Elevation Models

Throughout cartographic history there has been several approaches utilized to
represent the z-coordinate in maps. Contour lines or surface shading have been
some of the most used techniques to represent altimetry. Nowadays, Digital
Elevation Models (DEMs) are the most common tool to render the zcoordinate
in cartographic documents. DEM is often used as a generic term for both Digital
Surface and Terrain Models (DSMs and DTMs respectively), only representing
height information without any further definition about the surface. A DTM is
just a topographic model of the bare earth, containing the spatial elevation data
of the terrain in a digital format. A DSM not only represents the terrain surface
like a DTM, but also contains buildings and other objects which are higher and
above their surrounding soil [20]. The difference between DEM and DSM gives a
canopy height model (CHM). It is also called a normalized Digital Surface
Model (nDSM), describing the height of the vegetation and other non-ground

objects [21, 22].

A DEM can be represented as a raster grid or as a vector-based (TIN). DEMs

can be built from land surveying (based on topographic works with a total
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station or GPS) or from topographic maps. Nevertheless, they are commonly
built using data collected through remote sensing techniques. Aerial and
satellite images, taken by metric cameras mounted on aerial platforms, are a
valuable data source for large-scale DTM production from photogrammetric
techniques [23] In addition to aerial imagery, laser scanner sensors have proven
to be useful in extracting digital models. Thus, Airborne Laser Scanning
technology (ALS) has demonstrated that laser altimetry is a reliable technology
for determining accurate DSMs [24]. Although remote sensing measurement
sensors are capable of detecting DSMs, several methods have been developed for

the generation of DTMs from remotely sensed data [25, 26].

DEMs are often used in geographic information systems and are the most
common basis for digitally-produced relief maps. Additionally, they are used in
other applications such as, slopes calculation [27], viewshed analysis [28], or

flood modeling [29].

1.4.4.2. Orthoimages

Orthophotographs are photographic images constructed from vertical or near-
vertical aerial photographs. Any aerial photograph shows a characteristic known
as relief displacement. Relief displacement is the geometric distortion that
occurs due to elevation differences in the terrain being photographed [30]. An
orthophoto, orthophotograph, or orthoimage is an aerial photograph that is
geometrically corrected (that is, orthorectified) such that the scale is uniform
and consistent: the photo has the same lack of distortion as a map. Unlike an
uncorrected aerial photograph, an orthophotograph can be used to measure true
distances [31] because the processes used to generate orthophotos remove the
effects remove the effects of terrain relief displacement such as tilt of the
aircraft camera, relief, and lens distortion [32]. Thus, an orthophoto is an image
in which the relief displacements caused by perspective projection are removed
by taking the DTM into account during the rectification process. As a result of

the rectification process, the resulting orthophoto is shown in parallel
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(orthogonal) projection and at a constant scale. However, the buildings and any
other objects above the terrain are not correctly placed in the resulting
orthophoto due to these objects are not modeled in the DTM. Thus, these
objects are distorted from their true location in the final orthophoto in the form
of leaning buildings and warped bridges [33]. True orthophoto production
overcomes such deficiencies. A true orthophoto is an orthophoto in which
surface elements that are not included in the DTM are also rectified to their
orthogonal projection [34]. True orthophotos are generated by taking the DSM
into account instead of DTM during the rectification process. In a true
orthophoto, objects like buildings and bridges are moved back into their true
location and “blind spots” that are left behind are replaced with real imagery.
From a mapping point of view, this leads to a more realistic presentation of the
Earth’s surface since man-made structures are repositioned correctly and
occluded areas are filled with real image information. True orthophotos are also
used in terrestrial applications for a complete geometric and radiometric

representation of architectural objects [35].

In Spain, there is a national program to produce orthoimages of all national
territory, the National Aerial Orthophoto Program (PNOA, Plan Nacional de
Ortofotograffa ~ Aérea). PNOA’s main  objectives are  conducting
photogrammetric flights, processing and producing high-accuracy aerial
orthoimages with 25 and 50cm spatial resolution, and a DEM, with an update

period of 2-3 years, depending on the area [36].

1.4.4.3. Geographic Information Systems

A geographic information system (GIS) is a system designed to visualize,
capture, store, manipulate, analyze, and interpret data aiming to understand
relationships, patterns, and trends. GISs use geographic information and spatial
databases as input. Concerning geographic data, it may utilize any previously
described data, orthophotos, DEMs, or basic and derived cartography. In

contrast, spatial databases (also called geodatabases) are databases optimized to
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store and query data that represent objects defined in a geometric space. The
combination of cartographic information and databases allow users to create
interactive queries (user-created searches), analyze spatial information, edit data
in maps and present the results of all these operations [37]. A GIS project can

be distinguished into three main stages [38]:
- Data preparation. This is the early stage in which data about the study

phenomenon is collected and prepared to be entered into the system.

- Data analysis. Collected data is carefully reviewed and analyzed:
attempts are made to discover patterns and consultations are made on

geodatabases.

- Data presentation. Results of earlier analysis are presented in an

appropriate way, based on the input geographic information.

Since its origins, GISs have been well received in several disciplines. This
acceptance is proven by their use in such diverse disciplines as agriculture [39],

tourism [40], policy decision [41], or public health [42].

1.4.5. Big Data problem: automation of geospatial data treatment and analysis

At the beginning of remote sensing, geospatial data acquisition was expensive
and inaccurate. This was due to the low optic and photographic technological
development and the rudimentary existing airborne platforms. Thus, the major
drawback in remote sensing’s early years was the shortage of geospatial data
and the difficulty of its distribution. Over time, advances in
telecommunications, computer science, and electronics revolutionized remote
sensing work, facilitating the making, distribution, and storage of geospatial
information. Technological progress has been so rapid that the obstacles facing
remote sensing have reversed. Thus, remote sensing’s data scarcity has changed
to data overabundance. In many cases, it is difficult to store and manage this
large amount of information. Geospatial data, daily recorded from satellites and

airborne platforms, represent such a large amount of memory that manual
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processing, analysis, and interpretation are economically and temporally
unworkable. This is the problem with big data: an enormous amount of
information that is exponentially multiplied every second and must be processed
quickly [43]. Remote sensing big data does not merely refer to the volume and
velocity of data that outstrip the storage and computing capacity, but also the
variety and complexity of the remote sensing data [44]. This information should
be conveniently analyzed. That is why in several disciplines the current trend is
the development of tools and algorithms to automate those tasks traditionally
carried out by human operators. In the case of remote sensing, several
procedures have been automated, such as the radiometric and geometric
correction [45] or image mosaicking [46]. Pattern recognition techniques have
been used to automate scanning, extraction, and classification processes of

geographic features and cartographic entities.

1.4.6. Pattern Recognition Techniques

The development of computational machines and computers was a breakthrough
in disciplines like engineering, mathematics, or physics because they faced the
possibility of automating processes that would be unthinkable to be done
manually. Artificial intelligence, taking advantage of computers’ processing
power, goes a step further and tries to provide intelligence to computers to help
decision-making processes. Similarly, machine learning is a branch of artificial
intelligence that aims to develop techniques where computers can perform a
learning procedure, i.e. a process of knowledge induction. Machine learning can
be defined as the study of computer algorithms capable of learning to improve
their performance of a task by their own previous experience [47]. It can develop
programs aimed at generalizing behaviors from unstructured information.
Machine learning can be considered as an attempt to automate some parts of

the scientific method by mathematical approaches [48].

Pattern recognition is a machine-learning discipline. This science deals with

engineering, computer science, and mathematics processes related to the
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information extraction from physical or abstract objects, with the purpose of
determining patterns and establishing properties between sets of objects.
Patterns are obtained from segmentation, feature extraction, and description
processes in which every object is represented by a collection of descriptors.
System recognition must assign a category or class to each object. A category is
a set of entities that share some features that differentiate them from the rest.

A basic pattern recognition system includes:

Sensor: the device responsible for data acquisition. In remote sensing works,
active and passive aerial/satellite and terrestrial sensors are the most frequently

used.
Feature extraction: features generation that allows data classification.

Decision indices selection: selection of those features more suitable to describe
objects. In pattern classification, every considered object is classified into one of
the considered categories using features that properly separate classes. Initially,
the best set of features for the given classification problem is unknown. Thus,
first the appropriate set of features must be determined. It is relatively easy to
delete redundant features but difficult to add necessary features. Variable
selection can be used either either in the qualifying or representation step.
Variables used in the classification step must be representative of the classes to
be extracted and must have good separability from each other, i.e., they must

have a characteristic behavior in each of the considered classes.

Classification: classification is the last step of a pattern recognition procedure
and involves labeling every considered element as belonging to a particular class
using the available input data and computed decision indices. In the field of
statistics, it is more properly referred to as allocation rather than classification.
However, in this work the concepts of classification, labeling, categorization, and
allocation are used as synonyms [49]. Depending on how the classifier algorithm
works, there are two broad classes of classification procedures found in most

applications that analyze remote sensing data: supervised and unsupervised
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classifications. These are not, however, the only developed -classification
techniques, as fuzzy logic and anomaly detection algorithms have been also

applied in detection and classification issues.

1.4.6.1. Supervised Classification

Supervised classification is a type of semiautomatic learning that requires a
priori knowledge about the number and characteristics of the categories in
which the input data will be classified. The implementation of these
classification methods is composed of two phases. The first step consists of
training fields designed for every considered class. These training fields provide
information about the number of classes and their behavior in the considered
decision indices. In the second stage, a classification algorithm labels those
inputs to be categorized. The final quality of the classification procedure
depends on the descriptors and training field’s quality. The automation of
supervised classifiers is complex due to the different characteristics and
calibration of remote sensing sensors. Besides, certain phenomena presents a
temporary or seasonal nature, as crop fields chlorophyll content or surface water
bodies in swamps and lagoons, what difficult the generation of valid training
fields in any situation. This variability implies that training fields should be
available in each season for every land cover, which is a challenge for
automating classification procedures. There are numerous supervised
classification algorithms [50]. Some of the classifiers most widely used in remote
sensing applications are maximum likelihood, nearest neighbor, neural networks,

or support vector machine [51, 52].

1.4.6.2. Unsupervised Classification

Unsupervised classification, also known as clustering, is a classification without
learning, which means that no a priori knowledge of considered categories is
required to classify. Although one might think that these classifiers are less
practical and accurate than supervised classifiers, there are many reasons why

unsupervised procedures are valuable. In some cases, collecting and labeling a
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large set of sample patterns can be surprisingly costly. In many applications, the
characteristics of the patterns can change slowly over time (e.g. in automated
food classification as the seasons change). If these changes can be tracked by a
classifier running in an unsupervised mode, improved performance can be
achieved. In other works, unsupervised methods can be used to find features
that will be useful for categorization; there are unsupervised methods that
provide a form of data-dependent smart preprocessing or smart feature
extraction. In the early stages of an investigation, it may be valuable to perform
exploratory data analysis and thereby gain some insight into the nature and the
structure of the data. The discovery of distinct subclasses or major departures
from expected characteristics may suggest significant alterations in the approach
to designing the classifier [50]. Some of the unsupervised classifiers whose use is

most widely used in remote sensing works are ISODATA and K-means [53, 54].

1.4.6.3. Fuzzy Logic

Even though supervised and unsupervised classification algorithms are the most
widespread methods to extract and classify remote sensing data, other
procedures exist to extract patterns in images. One of these procedures is the
mathematical fuzzy logic. Developed in the 1960s by Prof. Lotfi Zadeh, fuzzy-set
mathematics is a superset of conventional (Boolean) logic that has been
extended to handle the concept of partial truth, ie. truth values between
"completely true" and "completely false." It was introduced as a means to model
the uncertainty of natural language [55]. In artificial intelligence, fuzzy logic is
used to solve problems related to industrial process control and decision systems
in general. Fuzzy logic systems make an effort to simulate the way in which
humans make decisions, with the advantage of being much faster. These
systems are generally robust and tolerant of inaccuracies and noise in the input
data. Conventional logic processors can manipulate strictly dual values, as
true/false or yes/no. In fuzzy logic, mathematical models are used to represent

subjective notions, such as hot/warm/cold, for specific values that can be
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manipulated by computers. More information about fuzzy logic methods and
applications can be found in [56, 57]. Fuzzy logic inference methods have been
applied in this thesis as a method for pattern recognition in a land cover

extraction.

1.4.6.4. Anomaly and Target Detection

Land covers and artificial and natural elements located on the ground have
characteristics and properties at different electromagnetic spectrum
wavelengths. In general, these properties are used to classify and discern from
one another. Sometimes, certain entities have very different spectral properties
than other elements of the set. In these cases, detection could be reduced to the
extraction of those elements with a particular behavior, different from other
elements of the package. Anomaly detection (or outlier detection) is the
identification of items, events, or observations that do not conform to an

expected pattern or other items in a dataset [58].

Anomalies are features of special interest to image analysts. In multi- and
hyperspectral imaging, anomalies should be understood as those elements
(objects or materials, whether artificial or natural) whose spectral signature
differs from the surrounding ground. In the current literature, there are some
methodologies and algorithms for the detection of abnormalities of the land,
such as RX algorithm (Reed Xiaoli) [59], Spectral Angle Mapper (SAM) [60], or
genetic algorithms. Once the anomaly detection algorithm is applied, it is the
operator who decides whether to classify the detected anomalies as items of
interest or consider them as image noise. Although the term "anomaly" is
commonly used in the remote sensing domain and "outlier" in statistics, in this
work anomaly detection will be considered equivalent to outlier detection in the

object space.

In contrast to anomaly detection, target detection algorithms require some a
priort information about the properties of the elements to be extracted. It could

be said that anomaly detection methods are related to the unsupervised
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extraction of unique elements in an image, and target detection corresponds
with supervised classification, according to the terminology of pattern

recognition.

(1}
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CHAPTER 2

Land Use Land Cover (LULC) database
updating: automatic land covers

detection and classification

-Do you pray to the gods?
— The Old and the New.
— There is only one god, and His name is Death.

And there is only one thing we say to Death: “not today”

Syrio Forel and Arya Stark

Pattern recognition techniques have many applications. This utility is
demonstrated by their use in several scientific disciplines such as medicine [61]
or chemistry [62]. Pattern recognition has also been successfully used in remote

sensing works for the extraction and classification of cartographic entities from
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geospatial data. In recent times, the continuous evolution of cities, urban
development, and the need to monitor land cover changes have led to the
development of programs at different scales for generating and updating LULC
databases. Thus, on a continental scale, Corine Landcover (Coordination of
Information on the Environment) is the most relevant land use project in
Europe, while SIOSE (Sistema de Informacién de Ocupacién del Suelo en
Espana) is the main land use program in Spain. In a more detailed approach,
cities such as Melbourne [63] and Toronto [64] have created urban vegetation
and street furniture inventories to keep control of their distribution and
conservation status. LULC databases and urban furniture inventories are
commonly generated using remote sensing data, such as aerial/satellite imagery
and 3D point clouds. There have been attempts to automate the creation and
updating of these databases with pattern recognition and image classification
techniques. Despite these efforts, automating these tasks is a complex process
whose performance is not always the intended outcome. Often, due to the lack
of spatial and radiometric resolution or capture characteristics in remote sensing
information, this information is no longer enough to achieve an accurate
classification. In these cases, remotely-sensed data is complemented by field
visits and visual inspection of the studied areas. Thus, photo interpreters and
operators generate thematic maps from visual inspection of remote sensing
information and field visits. These practices are very costly in terms of time and
money. Besides, the final quality depends on the photo interpreter’s experience.
For these reasons, the current trend in remote sensing and thematic
cartographic production is the development of automatic methods, allowing
extracting cartographic entities with the most accurate possible precision and

the less human operator intervention.

2.1. Land Use Land Cover Databases

LULC databases store information about the type of land cover that occupies a

certain area and its socio-economic activities. Before proceeding in more detail,
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it is appropriate to clarify what is meant by land use and land cover. These two
terms, although sometimes used interchangeably, have different meanings and

should be correctly differentiated.

) Land cover is related to the type of surface or those elements located on
Earth’s surface. It could be defined as “that continuous region with a set of
specific attributes and specific values that characterize it.” Asphalt, vegetation,

bare soil, olives, or vineyards are land cover examples.

® Land use is a concept related to the socio-economic activities carried out
on that ground and may overlap with the type of land cover. The land use must
be understood as the type of socio-economic activity and legal peculiarities (in
the same socio-economic sense) that occur in a region. Land use allows for
contemplating various aspects of the activities located in a territory. For
instance, within "conifer" coverage can be found very different uses, such as
forestry coverage and the recreational use of it. Sometimes, land uses are not

directly deducible through photo interpretation.

Land covers are observable and detectable from remotely sensed data; however,
the detection of land use usually requires field visits and ancillary information,
which complicate automation in the generation of land use databases. Since the
late twentieth century, several programs for the development of LULC
databases have been launched at different scales, from global (GlobCover), to
continental (Corine), and national (SIOSE). Although an effort has been made
to automate the generation of these databases, the majority of them are made

by direct interpretation of remote sensing information and specific field visits.

2.1.1. Corine Land Cover

Corine is a Furopean Commission program whose main objectives are i) the
collection of information on the state of the environment in relation to certain
priority issues for all Community Member States, ii) the coordination of data
collection and the organization of information within Member States of the

international community, and iii) ensure that information and data are both
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consistent and compatible. Corine Land Cover (CLC) is developed within the
Corine program. It is included in the Land Monitoring Core System of GMES
(Global Monitoring for Environment and Security) [65]. CLC aims to produce
and update a European LULC database at a scale of 1:100,000, which is useful
for territorial analysis and European policy management. Corine divides land
into three hierarchical levels and 44 land uses and covers. The program has
three versions, updated in 1990, 2000, and 2006. The classification of the
territory is made by photo interpretation of Landsat TM, Landsat 7, and
SPOT4 in each update. More specifications of the project and its updates are

described in [66, 67].

2.1.2. SIOSE

SIOSE (Sistema de Informacién de la Ocupacién del Suelo en Espaiia), together
with PNT (Plan Nacional de Teledeteccién) and PNOA (Plan Nacional de
Ortofotografia Aérea), is part of PNOT (Plan Nacional de Observacién del
Territorio). This national program is directed and led by Consejo Superior
Geografico and Direccién General del Instituto Geografico Nacional through the
Subdirecciéon General de Geodesia y Cartograffa. The main objectives of this

program [68] are:

- The application of the INSPIRE guidelines in measurement,
maintenance, and distribution of geographic information obtained in
Spain.

- Obtaining a GIS integrated and consistent throughout Spanish territory
to enable different administrations to coordinate their decision-making

processes.

Within PNOT, SIOSE’s main objective is the generation of an LULC database
throughout Spain with a reference scale of 1:25,000. SIOSE production is carried
out through photo interpretation using SPOT 5 satellite images, PNOA
orthophotos, Landsat 5 TM satellite images, and digital base map with a scale

of 1: 25,000 (BCN25), as geometry and temporal reference information. Photo
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interpretation works are reinforced by field work to settle questions concerning
land cover allocation from aerial and satellite imagery. Spanish territory is
divided into polygons and for each one a percentage of classes and attributes are
assigned, in accordance with the SIOSE data model. SIOSE is currently
produced at the national level at reference date 2005 (SIOSE 2005), with
subsequent updates at reference date 2009 (SIOSE 2009) and 2011 (SIOSE
2011). A fourth update at reference date 2014 (SIOSE 2014) is currently being
conducted. Technical information on production and updates to the SIOSE

program are detailed in [69].

2.2. Paper N°l: Semi-automatic detection of swimming

pools from aerial high-resolution images and LIDAR data

2.2.1. Summary

With the purpose of automating LULC database creation and updating, this
article developed a semi-automatic methodology to detect artificial water
surfaces in urban environments. This method inputs multispectral aerial images,
with information in visible and near-infrared wavelengths, and an ALS point
cloud. The process begins with image segmentation, grouping pixels that have
common characteristics, then moving from a pixel level to a regional level. A
graph adjacency region (RAG) is created in the segmented image to analyze
every region and its neighboring segments in the segmented image. For each
created region, a series of decision indices are computed. These are the
descriptors needed to accomplish the classification process. Depending on the
values of these decision indices, a mass of evidence belonging to each category is
assigned to every region. This evidence is combined through the Dempster-
Shafer evidence theory. For every segment, the probability of belonging to every
considered category is computed. Finally, each region is assigned to the class
with the greatest likelihood of belonging. The effectiveness of this method has
been tested in a 0.5m spatial resolution aerial image and in LIDAR data with

0.5 points/m” density, collected from the city of Alcala de Henares in June 2012.
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The proposed method for artificial water body extraction achieved an overall
accuracy of 99.86% and kappa index of 0.788 in the studied area. These results
are very close to those obtained with the Support Vector Machine (SVM)
supervised classification algorithm, but with the advantage of not requiring

prior classifier training.

2.2.2. Quality Indicators

This work has been published in Remote Sensing Journal, with an impact factor
of 3.180 according to a 2014 Journal Citation Reports (JCR) evaluation and has
been included in the top quartile in the Remote Sensing category. To date, this
paper has been cited by others research works and has four references according
to WOS (Web of Science) and SG. Following this work, some method details,
partial results, and results in other datasets have been presented in different
conferences such as the IGARSS 2012 (IEEE International Geoscience and
Remote Sensing Symposium) [70] (this contribution has been cited by 4 other
researchers, according to SG), the SPIE 2014 [71], the 16™ World Congress of
the International Fuzzy Systems Association, and the 9™ Conference of the
European Society for Fuzzy Logic and Technology (IFSA - EUSFLAT 2015)
[72].

This publication is the result of work in cartographic feature extraction from
geo-referenced spatial information conducted by the University of Alcald, in
collaboration with the Spanish Centro Nacional de Informacién Geografica
(CNIG), along with the National Geographic Institute (Instituto Geogrifico
Nacional, IGN). Specifically, this article is part of the European project
"HLANDATA: Creation of value-added services based on Harmonized Land Use
and Land Cover Datasets." The objective of this program is to provide
harmonized geospatial data in according to European needs and work on the
development of algorithms for automatic change detection. These algorithms are
incorporated into the production process to reduce the processing time needed

for LULC updating and to ensure useful, reliable, and quality results. During
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2011, the CNIG, along with the IGN, performed all phases of the project in
collaboration with the Polytechnic University of Valencia (Universitat
Politécnica de Valéncia, UPV) and the University of Alcald (Universidad de
Alcald, UAH) under cooperative agreements signed under the collaborative
framework agreements between these universities. Specifically, the UAH
research group analyzed and developed automatic methodologies for automatic

LULC detection and impervious surface determination [71].
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Abstract: Bodies of water, particularly swimming pools, are land covers of high interest.
Their maintenance involves energy costs that authorities must take into consideration. In
addition, swimming pools are important water sources for firefighting. However, they also
provide a habitat for mosquitoes to breed, potentially posing a serious health threat of
mosquito-borne disease. This paper presents a novel semi-automatic method of detecting
swimming pools in urban environments from aerial images and LIDAR data. A new index
for detecting swimming pools is presented (Normalized Difference Swimming Pools
Index) that is combined with three other decision indices using the Dempster—Shafer
theory to determine the locations of swimming pools. The proposed method was tested in
an urban area of the city of Alcala de Henares in Madrid, Spain. The method detected all
existing swimming pools in the studied area with an overall accuracy of 99.86%, similar to
the results obtained by support vector machines (SVM) supervised classification.

Keywords: feature extraction: land cover database; mapping updating; Dempster—Shafer;
RAG; NDSPI

1. Introduction

Cartographic feature detection using aerial and satellite images began several decades ago. Detection
has changed from being based on visual interpretation [1] to automated or semi-automated detection, in
which human knowledge plays a complementary role to classification and decision/detection
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algorithms [2]. As time passes, classification algorithms improve, and their accuracy and complexity
increases. Several classification algorithms exist and range from very simple, such as minimum distances
or Mahalanobis classifiers [3], to more complex, such as maximum likelihood classifiers [3], support
vector machines (SVM) [4,5] or neural networks [6]. The latter methods are supervised algorithms;
unsupervised algorithms, such as fuzzy clustering [7] or K-means, are useful when no training field is
available. Supervised and unsupervised classification algorithms are not fully automatic methods. The
current research trend in remote sensing is detecting land cover as automatically as possible [8,9].
Airborne laser sensors and LIDAR have proven to be great advances in land cover detection,
complementing aerial and satellite image information. Since the appearance of this data, several works
now use LIDAR to detect land covers in terrain. In [10], Song ef al. presented a land cover classification
using intensity and height data provided by a LIDAR flight; Antonarakis et al. performed forest and
soil-type classification without multispectral images [11]. Both works are based only on LIDAR data.
Other works combined aerial/satellite images and LIDAR information to detect different land uses and
land covers (LULC). Charaniya er al. [12] classified roads, buildings, trees and soil from aerial images,
digital elevation models and LIDAR data using a parametric supervised classification algorithm.
Building reconstruction fusing aerial images and LIDAR was carried out in [13] by Rottensteiner and
Briese. These authors detected buildings using a curvature-based classification.

The method presented in this paper is focused on water body detection, specifically swimming
pools located in urban environments. They are land covers of high interest for several reasons, and
authorities should have a database with the location of every swimming pool in a region for three
purposes. The first reason is to maintain control of taxes and to have knowledge about the energy
expenditures involved in maintaining these facilities. Second, the main use of swimming pools is for
leisure, but they are an important water source that could be used for firefighting. Wildfires can cause
important damages to people and the environment. Rapid detection and suppression of wildfires is key
to reducing their destructive effects. Firefighting requires every available resource, and an adequate
water supply is critical in a firefighter’s arsenal. By utilizing a home’s swimming pool, firefighters
could have access to strategically placed water supplies. The problem is accurately and quickly
identifying which residences have filled swimming pools at the time of the emergency [14]. Producing
a database with the location of every swimming pool in a region could be helpful for firefighting [15].
Third, mosquito-borne diseases affect many people throughout the world. Water in swimming pools at
unoccupied homes might not be filtered properly, and accumulated rainwater and decomposing leaves
likely will not be removed from the pool, providing an ideal habitat for mosquitoes to live and
reproduce [16]. The detection of swimming pools, which can provide a habitat for mosquitoes to
breed, therefore, is a useful tool in mosquito abatement.

Several works are related to water body detection in open spaces from satellite images.
Bo-Cai Gao proposed the Normalized Difference Water Index (NDWI), which provides good results in
the detection of open water, such as lakes or rivers [17]. Hangiu Xu [18] used another index, the
Modification of Normalized Difference Water Index (MNDWI), which modifies the latter and
provides better results. Zhang et al. proposed a method to extract water bodies from satellite images
based on entropy, but the results were not satisfactory in small water areas [19]. Frazier and Page [20]
detected water bodies on riverine floodplains from Landsat 5 images. Other works carried out flood
extent mapping and coastline detection using Synthetic Aperture Radar (SAR) [21-24]. These works
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are focused on large water body detection, and they provide good results for this type of land cover.
These methods do not provide good results for small-surface bodies of water, such as swimming pools,
due to the small size of these bodies and their different spectral response compared with other natural
water surfaces [20]. Other works in the current literature present methods oriented toward swimming
pool detection. Tien et al. [15] carried out swimming pool detection based on a supervised SVM
classification applied to an aerial RGB image. The researchers obtained good results in the studied
area, but as with every supervised classification method, a previous training field was needed.
Galindo et al. [25] presented an algorithm to determine the location of swimming pools from a
QuickBird image. In this two-step method, swimming pools are first localized in a color analysis
phase. Then, the contours of each region identified as a pool are refined using the adjusted object’s
contour algorithm. This method correctly detected more than 93% of the filled swimming pools in the
studied area, failing to identify mostly pools that exhibited occlusion and shadows. Myint ef al. [26]
compared swimming pools and other land cover extraction at the pixel and object levels. To detect
swimming pools and water surfaces, they used a segmented QuickBird image and set two thresholds in
the second and third component of principal component analysis (PCA). They correctly identified 99%
of the swimming pools in the studied area. However, this method is not robust or repeatable, because
PCA values change in every image, and the thresholds are not applicable to other images. In [14],
Fitzsimmons and Buck presented a method to detect swimming pools from multi-spectral satellite
images using the Spectral Angle Mapper (SAM) algorithm. This method provided good results, but
requires an accurate training site to work properly, which is not always possible. To identify
swimming pools that could serve as mosquito habitats, McFeeters [16] used the NDWI combined with
high-resolution multi-spectral imagery and a geographic information system (GIS). This method
detected almost 80% of parcels known to have swimming pools. Parcels not identified as containing
swimming pools lacked a sufficient amount of surface water to be detected by the NDWI.

This paper presents a semi-automatic methodology to determine the locations of existing swimming
pools in an urban environment using aerial images and LIDAR data. The proposed method is based on
PCA, image segmentation, a region adjacency graph and the calculation of four decision indices.
These indices are combined with the Dempster—Shafer theory to determine the locations of the pools.
The results obtained are discussed along with three other methods in order to evaluate the outcomes of
the proposed method. This paper is organized as follows. The materials used in the procedure are
described in Section 2, and the methodology is discussed in Section 3. The results and the four studied
methods are presented in Section 4, and our conclusions are presented in Section 3.

2. Materials

In this document, an aerial image and LIDAR data have been used as input datasets. The aerial
image (Figure la) was taken by an UltraCam-Xp sensor. Its spatial resolution is 1 meter/pixel, and it is
formed by four spectral bands: blue (B), green (G), red (R) and near-infrared (NIR). The image was
taken in summer, 2010, in the Spanish city of Alcala de Henares. The scene used in this paper has a
dimension of 400 x 750 pixels.

LIDAR technology allows the calculation of the digital surface model (DSM) with a precision of
the order of 20 ¢cm in planimetry and 30 cm in height [27]. The combination of a sweeping beam laser
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with inertial navigation systems and a GPS guarantees high geometric precision in the data. In this
study, the LEICA ALS50-II (Leica Geosystems AG, Heerbrugg, Switzerland) sensor to capture the
LIDAR data was used. The main features of this sensor are that it works at flight altitudes between 200
and 6000 m, and it has a frequency of 150,000 Hz, a field of view (FOV) between 10 and 75 degrees, a
point density up to 150,000 Hz, an altimetry precision of 11 cm, a footprint between 0.3 and 5 m and a
point density up to 12 points per square meter. Although a DSM could also be obtained by classical
digital photogrammetry, this would be more expensive and slower to produce. The LIDAR data used
in the present work correspond to a flight conducted in the summer of 2010. The flight was conducted
at an altitude of approximately 1800 m above the ground; the scan angle was £20 degrees, and the scan
frequency 1,000,000 Hz. The resulting point density was 0.5 points per square meter. The coordinate
system is WGS84 with orthometric heights.

Figure 1. (a) Aerial RGB image; (b) digital surface model (DSM); (e¢) intensity LIDAR
data; (d) near-infrared band from the aerial image; and (e) the ground truth made by the
authors to determine the accuracy of each studied method.

(e)
3. Method

In this paper, a method for the semi-automatic detection of swimming pools in urban areas is
shown. ldentification and extraction begin with the lecture of the aerial image and the rasterization of
LIDAR data. Next, segmentation of the aerial image into regions is carried out. The segmented image
is used to create a region adjacency graph (RAG), which is useful to manage the image at the region
level. Dempster—Shafer evidence theory is applied to determine which category corresponds to each
region of the segmented image depending on the value of each studied decision index. The procedure
ends with the reassignation of shadowed areas due to a bad behavior of the proposed index to
determine the location of swimming pools in these dark regions. Figure 2 shows a flow chart of the
method proposed in this paper.
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Figure 2. Flow chart of the proposed method for the detection of swimming pools. NIR,
near-infrared; PCA, principal component analysis; DSM, digital surface model; DTM,
digital terrain model; NDVI, Normalized Difference Vegetation Index; NDSPI,
Normalized Difference Swimming Pool Index; RAG, region adjacency graph; nDSM,
normalized digital surface model; LULC, land uses and land covers.
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3.1. Aerial Image Loading, LIDAR Data Rasterization and nDSM Generation

The first step in the procedure is reading the different bands involved in the process. Three optical
bands (red (R), green (G) and blue (B)) are used from the aerial image, as well as the near-infrared
band (NIR).

Height and intensity information was obtained from LIDAR data. The DSM was obtained from the
first echo of each pulse after filtering the noise that was generated in the data capture process. The 3D
clouds of the LAS file was rasterized using the method proposed by [28], who divided the data into
regular cells, with each cell containing a determinate number of individual LIDAR points depending
on the local density of each cell. The final elevation for each cell was calculated as the average of
several LIDAR points contained within that cell; if a cell was without points, then nearest neighbor
interpolation was applied. The cell size was 1 m. The DSM contained information regarding
construction, vegetation and uncultivated ground, as seen in Figure 1b. The digital terrain model
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(DTM) was generated as a product derived from the DSM after employing a semi-automatic method
developed by [29]. This method consists of applying several filters to the DSM with the intention of
removing the non-ground points. Next, minimal manual editing of the points that had not been
properly classified was necessary. Finally, the normalized digital surface model (nDSM) was
generated by calculating the difference between the DSM and DTM. LIDAR data come in a binary
format according to the ASPRS norm. The LAS format includes information, such as GPS time and
intensity, in addition to echoes of the pulses. In addition to height, intensity data was rasterized to add
information to the process. The final intensity value of each pixel was calculated as the average of all
intensity values of the LIDAR points contained in each cell, as in the rasterization of height data. The
rasterization of DSM and intensity data are shown in Figure 1b,c, respectively. The near-infrared band
of the aerial image is shown in Figure 1d.

3.2. Segmentation of First Component Image from PCA

Segmenting an image involves moving from the pixel-level to the segment-level in order to reduce
its dimensionality. Segmentation involves group pixels that have similar properties; these pixels are
treated as a set. Several methods for segmenting exist, such as clustering [30], thresholding [31] or
region-growing [32]. A recent review of existing segmentation methods can be seen in [33]. In the
work presented in this paper, region-growing segmentation was carried out [34].

A region-growing method is applied to a single band. Images used in this work are composed of
several bands. To consider a single band, a principal component analysis (PCA) was applied to the
four bands of the aerial image. Only the first component of PCA, which is the one with the most
information, was considered. The first PCA component and the seeds from which the regions grow are
the inputs of the region-growing method. Several ways to consider the seeds are present (randomly,
consecutively, etc.). The present work considers as seeds every pixel that in a pass from left to right
and from top to bottom of the first PCA component does not yet belong to any region. The process
begins by taking as the first seed the pixel in the top left corner of the image. In the first step, the
region is composed of the seed, and this region grows iteratively by comparing the seed with each
neighboring pixel. The neighborhood for the studied pixel (i,j) is considered those pixels that share at
least one edge. A predetermined threshold (o in Equation (1)) discriminates between the membership
and non-membership of a pixel in a region. In a region of n pixels, the studied pixel (i,j) is assigned to
this region if the difference between the digital value (DV) of the pixel and the mean DV of the studied
region is lower than the threshold (1). Otherwise, the studied pixel is not assigned to the region, and it
is considered a seed in the next step of the procedure. Subsequently, the next pixel that does not belong
to any region is considered a seed. If a pixel is assigned to a region, it is not considered a seed in this
procedure. The region-growing method ends when all pixels in the image are assigned to a region [35-37].

w=1 DV, x=1DV,
%— a < First PCA componentli, j] < ¥+ a

(M
3.3. Creation of a Region Adjacency Graph (RAG)

A region adjacency graph (RAG) is a type of data structure that facilitates merging and splitting
operations. In this work, the RAG was used to represent regions contained in an image and the
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relationship between them. Every node of the graph represents a region of the segmented image and
contains its information. The edges are used to represent the connection between regions; edges link
nodes that represent neighbor regions (see Figure 3). RAG is useful for emphasizing region adjacency
and plays an important role in index calculation and assigning coverage.

Figure 3. (a) Synthetic image formed by nine regions and fifteen edges:;
and (b) corresponding region adjacency graph (RAG).

3.4. Decision Indices Computing

Even though the final result is a binary image that only represents swimming pools and background,
five types of land covers were considered in the beginning of the procedure: vegetation, buildings,
roads, bare soil and water bodies. Better results were obtained by increasing the number of classes. If
only two classes are considered, there would be a class that includes elements of a very different
nature. This would produce errors in the detection of land covers. Four decision indexes were used for
the detection of the five land covers: the Normalized Difference Vegetation Index (NDVI), LIDAR
intensity the nDSM and the index created by the authors of this work, aimed at detecting pools, the
Normalized Difference Swimming Pool Index (NDSPI).

3.4.1. NDVI

The NDVI index was used to detect the location of vegetation land cover. The use of this index is
very common in remote sensing applications to estimate the quality, quantity and development of
vegetation from aerial or satellite images. The NDVI index has been used to, among other applications,
monitor global vegetation [38] and crop growth [39] or to conduct deforestation studies [40]. The
spectral response of vegetation has a characteristic shape with radiance in the near-infrared wavelength
(NIR), much higher than in the bands of the visible spectrum, where it takes the lowest values in the
blue (B) and red bands (R). No other categories considered have a spectral signature of these features.
The NDVI index combines the information from the red and NIR bands to determine the location of
vegetation (2) (see Figure 4a).
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NDVI = NIR — RED ,
" NIR + RED @)

3.4.2. LIDAR Intensity

LIDAR data not only provides a surface digital model, but offers other data, such as the image of
the point density or the intensity of the reflected laser pulse at the surface. Asphalted surfaces provide
small LIDAR intensity values [41]. This characteristic of the laser pulse intensity LIDAR has been
used to detect roads in the image (see Figure 4b). Since a building may have a similar spectral
response to an asphalted region, LIDAR intensity has been combined with nDSM to avoid false
positives. Thus, only regions with low intensity values and low heights will be considered as roads.

3.4.3.nDSM

In order to detect high elements, an nDSM has been used. The nDSM was obtained from a DSM
provided by LIDAR data and a DTM generated as a product derived from the DSM. The nDSM was
generated by the research group to which the authors of this work belong [29] (see Figure 4c). The
aerial images and the nDSM are geo-referenced properly and have the same spatial resolution, making
it possible to combine and work with them at the same time.

3.4.4. NDSPI

Open water surfaces (oceans, rivers, lakes, efc.) have a characteristic spectral signature. The highest
reflectance of these covers in the electromagnetic spectrum occurs in the blue wavelengths (0.45 to
0.47 um) and the greatest absorption in the infrared wavelengths (0.7 to 300 um). Figure 5 shows the
spectral response of three sheets of open water. This dataset has been obtained from aerial images from
different parts of Spain. The highest reflectance is obtained in the wavelengths corresponding to blue,
except for Lake 2, in which the highest reflectivity occurs in the green wavelengths, but is close to the
blue band. The lower reflectance occurs at the wavelengths corresponding to the NIR wavelengths. It
has been observed that the spectral response of swimming pools is quite different to other sheets of
open water. These differences may be due to the properties of pool water and the background color of
these elements. It was observed that higher reflectance is retained in wavelengths corresponding to
blue. However, the lowest reflectance takes place in the red band, instead of in the NIR wavelengths,
as happened in the open water surfaces (see Figure 6)

Taking advantage of this characteristic of the spectral signature of swimming pools, the authors of
this paper have developed an index to detect this land cover. This index is derived from the red (R) and
blue band (B) (3) of the visible spectrum:

— BLUE — RED ;
"~ BLUE + RED ©)

The latter index provides the highest values in swimming pools and shadowed regions. These false
positives in the dark areas are corrected by generating an image of the shadows, as explained below
(see Figure 4d).
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Figure 4. (a) NDVI index image: (b) LIDAR intensity; (¢) nDSM; and (d) the NDSPI
index created by the authors.

Figure 5. Spectral signatures of a river and two lakes in an aerial RGB-NIR image.
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Figure 6. Spectral signatures of five swimming pools in an aerial RGB-NIR image.
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3.4.5. NDWI

To test the efficiency of the proposed NDSPI and to determine which index has the highest
accuracy, the NDWI (4) used in other works to determine the location of water bodies [42] was
included in the procedure. For water extraction, NDWI was adopted and defined as:

B GREEN — NIR .
~ GREEN + NIR )

in which GREEN and NIR represent the green band and the near-infrared band, respectively. This
index was designed to maximize reflectance of water by using green wavelengths, to minimize the low
reflectance of NIR by water features and to take advantage of the high reflectance of NIR by
vegetation and soil features. Thus, water features have positive values, while vegetation and soil have
negative values.

3.5. Dempster—Shafer Theory

Evidence theory was developed by Dempster [43] and was later extended by Shafer [44]. For this
reason, it is commonly referred to as the Dempster—Shafer theory. The objective of this theory is to
model the way in which humans assign evidence to different propositions [45]. Evidence theory can be
considered as a special case of fuzzy theory [46]. It is motivated by the difficulties found in the theory
of probability, representing uncertainty. With the advent of the computational capacity of computers in
the 1960s, it became necessary to create theories to model human thought. Classical logic and
mathematics had very rigid models for this new phenomenon of scientific interest: the uncertainty that
develops every human activity. Zadeh [47] was the first to propose and develop the theory of fuzzy sets.

The mathematical theory of evidence is a field in which data sources are treated separately, and
their contributions are combined to provide a joint inference on the correct label for every pixel.
Although evidence theory involves the numerical manipulation of quantitative measures of the test, the
link between these measures and the original dataset is left to the user. This theory does not require a
full probability model against the requirements of other approaches. It attempts to benefit from the use
of sets of assumption hypotheses rather than separate hypotheses, as other approaches do. It aims to
facilitate the reallocation of belief in hypotheses when evidence changes. It attempts to model the
decrease of a working set of hypotheses from evidence accumulation [3].

3.5.1. Dempster—Shafer Theory in Land Cover Detection

The objective of the work presented in this paper is to generate a map with the location of five land
covers in the studied area. The ultimate result is to detect only swimming pools, but five categories are
taken into account: buildings, vegetation, roads, bare soil and pools. In the Dempster—Shafer theory,
the building class is noted with X and vegetation with Y; Z corresponds to roads, T bare soil and W
swimming pools. Also considered is 8 as the inherent uncertainty in the theory of evidence. The frame
of discernment, €, is formed by X, Y, Z, T, W and 0:

O={X,Y, 2T W6}
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For each decision index, the mass of evidence is noted by wi (i = 1...4, the number of decision
indices considered): (1i(X), pi(Y), wi(Z), wi(T), wi(W) , 1i(8)), with the assumption that pi(X) + pi(Y) +
wi(Z) + p(T) + pi(W) + pi(6) = 1, , Vi = 1... 4 [48]. The probability of belonging to each category
(Wi(X), wi(Y), mi(Z), pi(T), pi(W) , pi(0)) is determined from the values taken by each index on every
region according to some functions developed by the authors. Thus, a high NDVI value corresponds to
a high probability of belonging to vegetation land cover and a low probability of belonging to the
remaining land cover.

With the values, pi(X), ti(Y), mi(Z), pi(T), pi(W) , pi(8), for the four decision indices (i = 1...4), the
evidence combination rule of Dempster—Shafer is applied for every region in the image [43]. This
combination (j1;j) is an iterative process in which the knowledge acquired with a certain rate (1)) is
combined with the following index (p;) Equation (5):

Yenc=a Wi(B) 1, (€) 5
Sanc = 1 B (0) )

The result of this process is, for every region, the probability of belonging to each of the
considered categories.

n = (@ ppA) =

3.5.2. Land Cover Allocation

Once the RAG was generated and the Dempster—Shafer evidence theory was applied, land cover
allocation was carried out. As discussed in the previous section, the result of applying
Dempster—Shafer to each region in the segmented image was the probability of belonging to each of
the five categories. According to the Dempster—Shafer results, each region was assigned to the
category to which it had the highest probability of belonging. Until this point, five categories have
been taken into account, but at this point, they are reduced to two: swimming pools and background.
Background land cover includes vegetation, buildings, bare soil and roads. The results of land cover
assignment provide false positives in shadowed regions; some dark regions are labeled as water
bodies. Figure 7 shows the regions detected as swimming pools after the land cover allocation based
on probabilities obtained with the Dempster—Shafer theory.

3.6. Shadow Detection and Correction of Dark Regions Labeled As Water Surfaces

As seen in Figure 7, after the land cover allocation based on probabilities obtained with the
Dempster—Shafer theory, several regions are labeled as pools that belong to other land covers.

This is because the spectral response of shadowed regions provides reflectance values in the red
wavelengths lower than those that correspond to blue wavelengths (Figure 8). This property shows that
some shadowed areas have a similar value on the NDSPI index as swimming pools. To correct this
error, a reallocation of coverage in the shadowed regions that have been labeled as sheets of water is
carried out. This is achieved by generating a shadow image from the flight data from which the image
was taken. The shadow image is generated using an algorithm developed by our research group [49].
By combining this image and the RAG, it is possible to determine the regions that were in a shadowed
area and were labeled as sheets of water. Those regions are assigned to the next category with the
highest probability, different from swimming pools, according to the Dempster—Shafer results.
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Furthermore, a minimum size of four square meters has been set for swimming pools, because pools
under that size are not in consideration. Regions labeled as sheets of water that are less than 4 pixels
have been assigned to other categories, as well (Figure 9).

Figure 7. (a) The detail of the studied area in RGB; (b) swimming pools detected in the
former detail (it is possible to see two swimming pools correctly detected and two large
false positive regions in dark areas); (¢) another detailed imaged of the studied area in
RGB; and (d) swimming pool detection (there are no pools in this area, but there are some
false positives in shadowed regions).
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Figure 9. (a) Swimming pools detected with false positives in shadowed areas;
(b) shadowed regions in the studied area (white color represents shadowed areas, black
shows no dark regions); and (¢) swimming pools detected after removing false positives in
shadowed regions.

(a) (c)

3.7. Reference Data and Evaluation

Two supervised classifiers, Mahalanobis and SVM, and the proposed method of replacing the
NDSPI with the NDWI were carried out and compared with the proposed method to test whether the
proposed semi-automatic method provides better results than a supervised classification. In order to
quantify the results obtained with each method, each result was compared with a ground truth
elaborated by the authors (see Figure le). The black regions correspond to swimming pools (SP) and
the white regions correspond to the background (BG). The evaluation was carried out to determine the
confusion matrix [50], kappa index and commission and omission errors, comparing the ground truth
with the result of each studied method.

4. Results and Discussion

The results obtained for the image in Figure 1a, which correspond to the area studied in the city of
Alcald de Henares, are shown below. Figure 10 shows the results obtained for each classification in
Details A and B. Swimming pools are represented in black, and white color is used for the background.

Figure 10a—e shows the results of each method studied for the first 200 x 200 detail. Figure 10b
shows the Mahalanobis classification results, in which false positives in shadowed areas have
occurred. Figure 10c,e correspond with SVM and NDSPI methods, and in both images, it can be
observed that swimming pools are determined without false positives or noise. Figure 10d shows the
details for the NDWI method. It can be observed that not every swimming pool is detected, and
furthermore, false positives are found in vegetated areas. Figure 10f—j represents the results of the
second 200 x 200 detail for every method studied. Figure 10g,i represents the results of the
Mahalanobis and NDWI methods. It can be observed that both methods provide false positives for
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some buildings. Both methods consider these buildings as swimming pools due to their spectral
responses. Figure 10h,j shows the best results obtained with the SVM and NDSPI methods. The
detection provided by both methods is good, and swimming pools are properly determined. The SVM
classifier provides some noise in isolated pixels, as seen in Figure 10h. In order to quantify the results
obtained with every method, each result has been compared with a ground truth elaborated by the
authors (see Figure le). Black regions correspond to swimming pools (SP) and white regions to the
background (BG).

Figure 10. Results for two 200 x 200 details of the studied area are represented in
(a—e) and (f-j), respectively. RGB images of both details are shown in (a) and (f), (b) and
(g) present the results obtained with Mahalanobis classification, SVM detection is
presented in (¢) and (h), NDWI results are shown in (d) and (i), and the results provided by

NDSPI are (e) and (j).
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Table 1 shows the results provided by the studied methods. The Mahalanobis classifier provided
lower accuracy (98.51%) than the SVM classifier (99.87%) did [51], due to labeling many of the
pixels that belonged to the background as swimming pool. The kappa index of this method was also
low, close to 0.3, and it produced a high commission error percentage in swimming pools and
omission errors in the background, as more than 4000 background pixels were labeled as SP. However,
only 90 SP pixels were incorrectly classified. This method provides a 91.53% producer’s accuracy and
17.98% user’s accuracy index [52]. The SVM classifier provided high accuracy, close to 99.9%, and
its kappa index was 0.79. This means that the SVM supervised classification provides good results in
swimming pool detection, as can be seen in the low commission/omission error rate. The highest
percentage corresponded to SP omission error, as 312 SP pixels were incorrectly classified as
background. The producer’s and user’s accuracy take values of 70.31% and 91.57%, respectively, for
the SP category. The NDWTI index provided high accuracy (close to 99.25%), but a low kappa index
value, close to 0.19. It produced a high rate of commission and omission errors in the SP class: 781 SP
pixels were labelled as BG, and 1468 BG pixels were classified as SP. In terms of producer’s and
user’s accuracy, 25.69% and 15.54% are obtained, respectively. The results of the proposed method
produced an accuracy of 99.86% and a kappa index close to 0.79. The commission and omission error
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rates were similar to those obtained with the SVM classifier. The omission error in SP detection had
the highest percentage, as 289 SP pixels were labeled as BG. The proposed method achieved a 72.5%
producer’s accuracy and 86.49% user’s accuracy. According to these tables, the supervised SVM
classification and the proposed method with the NDSPI index are the best methods. Both provide
almost the same results, with accuracy close to 99.9% and a kappa index of 0.79.

Table 1. Confusion matrix of the studied methods, where columns are the ground truth and
rows represent the classification results. SP, swimming pools; BG, background.

MAHALANOBIS SYM NDWI NDSPI
SP BG = SP BG x SP BG z SP BG b
Sp 962 4387 5349 739 68 807 270 1468 1738 762 119 881
BG 89 294 387 294,476 312 298,706 299018 781 297306 298,087 289 298,655 298,944
b3 1051 298,774 299825 1051 208774 299825 1051 298774 299825 1051 208,774 299825
(295,349/299,825) 98.51 % (299,445/299,825)99.87% (27.576/299,825) 99.25% (299,417/299,825) 99.86%
Kappa coefficient = 0.2965 Kappa coefficient = 0.7949 Kappa coefficient = 0.1901 Kappa coefficient = 0.7881
Commission Omission Commission Omission Commission Omission Commission Omission
sp 82.02% 8.47% 8.43% 29.69% 84 46% T4.31% 13.51% 27.50%
BG 0.03% 1.47% 0.10% 0.02% 0.26% 0.49% 0.10% 0.04%
Prod. Ace. User Acc. Prod. Acc. User Acc. Prod. Acc. User Acc. Prod. Acc. User Acc.
SP 91.53% 17.98% 70.31% 91.57% 25.69% 13.54% 72.50% 86.49%
BG 98.53% 99.97% 99.98% 99.90% 99.51% 99.74% 99.96% 99.90%

5. Conclusions

Efficient methods to detect sheets of water automatically could be of vital importance for
firefighting. In this paper, we propose a novel method for the semi-automatic detection of swimming
pools in urban environments from aerial images and LIDAR data. The proposed method uses the
NDSPI based on the spectral response of swimming pools, a region adjacency graph, and
Dempster—Shafer theory to successfully identify the location of this cover in urban areas. The behavior
of the proposed method was discussed in conjunction with three other methods to detect swimming
pools: two supervised classifications (Mahalanobis and SVM) and the proposed method for detecting
pools using the NDWI, which is useful in the detection of large bodies of water. The performance of
the four methods was tested in a real dataset from the Spanish city of Alcald de Henares. The creation
of a ground truth of the studied region enabled numerical analysis of accuracy and determination of the
kappa coefficient for the different methods.

The results show the performance of each method conducted on the studied dataset. Through a
visual analysis, it can be seen that the proposed method using the NDSPI and SVM classifier produced
the best results in the studied region.

The proposed method using the NDSPI achieved an accuracy of 99.86% and a kappa index of 0.79,
better than the accuracy obtained with the Mahalanobis classification and proposed method with the
NDWI (90.19% and 99.25%, respectively) and close to the 99.87% accuracy and 0.79 kappa index
produced by the SVM supervised classification. It can be observed that almost every swimming pool
was detected by the SVM classifier and proposed method. Although false positives were found with
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some covers, commission errors were quite lower than in other methods, such as the Mahalanobis
classifier. The main innovation of the proposed method is that it does not require prior training, as do
supervised classifiers, and it only needs the correct threshold of every decision index used in the
method to obtain good detection of swimming pools.

There are different types of water body land covers, such as oceans, seas and rivers, and there is no
single best method or index to detect land covers in all cases, because the results vary by the spectral
and spatial properties of each type of land cover. According to the results obtained, we can conclude
that the method presented in this paper is useful in the semi-automatically determining of the location
of swimming pools in urban areas from aerial images and LIDAR data.
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CHAPTER 3

Urban furniture inventory: urban
features extraction and classification

from geospatial data

Al andar se hace camino
y al volver la vista atrds
se ve la senda que nunca

se ha de volver a pisar.

Caminante no hay camino

sino estelas en la mar...

Antonio Machado

Assets inventory consists of the collection and georeferencing in a database of all
assets contained in an urban environment—from street furniture, such as traffic
signals, to cultural heritage, trees, pavement, and sidewalks. The knowledge of

the location and state of conservation of these elements guarantees and

o
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facilitates city street furniture and urban resources management. Many cities
have a street furniture inventory that must be regularly updated and aims to
facilitate the control and monitoring of those infrastructures, parks, and
facilities located in urban centers. Some cities, such as Melbourne [63], have
developed street furniture plans to outline issues needing to be addressed
regarding the provision of street furniture and recommending actions.
Nowadays, cities are supposed to provide street furniture that is accessible,
comfortable, heritage consistent, durable, and of high-quality design. All these
specifications lead to the development and maintenance of accurate information
about the city’s street furniture assets in terms of condition and functionality.
Collecting information for the preparation of these inventories is usually carried
out through field visits and photo interpretation of remotely sensed data,
mainly photographs and point clouds. This makes database creation and
updating a slow and expensive process. In the investigations carried out and
presented in this thesis as publications No.2 and No.3, two methodologies aimed
at automating the processes of extracting and classifying street furniture from

3D MLS point clouds have been developed.

3.1. Paper N°2: Automatic detection and classification of

pole-like objects in urban point cloud data using an

anomaly detection algorithm

3.1.1. Summary

This research developed a method to automatically extract and classify vertical
urban furniture and vegetation in an urban environment from 3D MLS point
clouds. This method is developed to work with unorganized point clouds and
does not require a priori additional information about the urban furniture
typology or the MLS trajectory. Due to its simplicity, practicality, and
robustness, this method could be an accurate, effective solution in economic and

qualitative terms to produce and update urban furniture inventories. The pole-



Chapter 3 — Urban furniture inventory

like objects extraction method is based on an RX anomaly detection algorithm
commonly used in hyperspectral imagery and successfully adapted to 3D point
clouds organized in structure pillars limited in height. Classification procedure is
carried out through a clustering algorithm, considering a series of geometric
variables that have a well-differentiated behavior in the two considered
categories: vertical artificial street furniture and trees. Besides, it has developed
an index from geometric 3D point cloud features that allows the reconstruction
of the MLS trajectory and the detection of horizontal and vertical surfaces in
the studied street section. The efficiency of the extraction and classification
method was tested in two point clouds that represent different street
configurations and were measured by different laser scanner semsors. In both
cases, satisfactory results were obtained, which shows the capacity and
robustness of this method. The reported average accuracy for pole-like object
detection from the two considered dataset was 95%, the classification procedure
achieved an overall accuracy of around 95%, and the accuracy of both

extraction and classification procedures was above 90%.

3.1.2. Quality Indicators

This contribution has been published under the title “Automatic detection and
classification of pole-like objects in urban point cloud data using an anomaly
detection algorithm” (73] in the Remote Sensing Journal, with an impact factor
of 3.18 according to a 2014 JCR evaluation. More details of the method
developed in this paper and partial results of this research have been presented
in some international and national conferences, such as the IEEE International
Geoscience and Remote Sensing Symposium 2015 [74] and the Spanish Remote
Sensing Association XVI conference (Asociacién Espanola de Teledeteccion,

AET), held in Sevilla in October 2015 [75).

Following the research line in which this contribution is framed, with the
development of computer algorithms for anomaly and target detection in

cartographic entities, it has been carried out the COINCIDENTE project titled
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"Anomaly and target detection in hyperspectral imaging”, in collaboration with
the Spanish Ministry of Defense. This project has made it possible to implement
some algorithm and target detection algorithms in a computer application to
quantify the ability of hyperspectral sensors to detect different types of
anomalies and target objectives. The accuracy of the anomaly and target
detectors has been tested in controlled experiments, using targets of different
sizes and spectral signatures. Anomaly detection algorithms are useful for armed
forces in several military applications such as the detection of masked weapons

systems or the identification of contaminants in water and the atmosphere.

As a summary, the knowledge and application of algorithms and techniques for
an anomaly detection algorithm in remotely sensed geospatial data allow the
collaboration with multidisciplinary expert researchers and the development of
useful tools for the exercise of their activities, either as part of the mapping

industry or in the security field.
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Abstract: Detecting and modeling urban furniture are of particular interest for urban
management and the development of autonomous driving systems. This paper presents a
novel method for detecting and classifying vertical urban objects and trees from unstructured
three-dimensional mobile laser scanner (MLS) or terrestrial laser scanner (TLS) point cloud
data. The method includes an automatic initial segmentation to remove the parts of the
original cloud that are not of interest for detecting vertical objects, by means of a geometric
index based on features of the point cloud. Vertical object detection is carried out through
the Reed and Xiaoli (RX) anomaly detection algorithm applied to a pillar structure in which
the point cloud was previously organized. A clustering algorithm is then used to classify the
detected vertical elements as man-made poles or trees. The effectiveness of the proposed method
was tested in two point clouds from heterogeneous street scenarios and measured by two
different sensors. The results for the two test sites achieved detection rates higher than 96%; the
classification accuracy was around 95%, and the completion quality of both procedures was
90%. Non-detected poles come from occlusions in the point cloud and low-height traffic signs;
most misclassifications occurred in man-made poles adjacent to trees.
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1. Introduction

Creating and updating accurate maps and spatial databases has been demanded by various
applications such as city management, urban planning, and intelligent transportation systems. For city
management and urban planning, accurate land cover information is needed to document cities growth,
make policy decisions, and improve land use planning [1]. For intelligent transportation systems, updated
geodatabases that include the location of urban objects and traffic signs are required for terrestrial
navigation and, of course, to decrease traffic congestion, lessen the risk of accidents [2], and develop
autonomous driving systems [3]. Geospatial information has been widely used to meet these requirements
for accurate and up-to-date remote sensed data. Light detection and ranging (LIDAR) technology has been
used extensively in surveying and mapping. This technology provides three-dimensional data that
complements the spectral information contained in two-dimensional images. Laser scanner sensors can
be placed on aerial (airborne laser scanner, ALS) and terrestrial platforms (terrestrial LIDAR). Terrestrial
LIDAR can be subdivided into two types: static and dynamic. Static terrestrial LIDAR technology
(terrestrial laser scanner, TLS) data is collected from a sensor fixed in a base station. Thus, a small area
can be mapped with high accuracy, but several scans are needed to cover large areas. Dynamic terrestrial
LIDAR sensors (mobile laser scanner, MLS) are installed in vehicles provided with, as for ALS
platforms, a navigation system based on global navigation satellite systems (GNSS) and inertial
measurement units (IMUs). These devices determine the position of the mobile platform and the
direction and orientation of the sensor at every moment [4].

Given that MLSs and ALSs capture data in large areas within short periods, both sensors are
commonly used for urban applications, while the TLS is reserved for short-range applications, such as
forest inventory [5], deformation monitoring [6] or heritage documentation [7]. ALS and MLS sensors
provide three-dimensional (3D) point cloud data from mobile platforms, but significant differences exist
between the two systems. ALS capture objects from the top view, while MLS and TLS collect data from
the side-view, which makes the data taken by both types of sensors complementary. Additionally, the
distance between the sensors and the ground is shorter in an MLS than in an ALS; consequently, the
former performs measurements with higher resolution and greater density than the aerial sensors. ALS
sensors cover large areas cost-effectively and rapidly but fail to capture details of small urban targets.
Thus, MLS sensors are suitable for ground-based object modeling and to detect and extract elements
located at street level, hardly achievable tasks in low density ALS data [8]. The main disadvantage is
that MLS output files are large and hard to manage, forcing the development of organizing, cataloging,
and optimizing methodologies to reduce the computation time significantly.

Many works in which point clouds are involved incorporate a preprocessing step or develop
techniques that facilitate the treatment of the datasets and reduce the processing times. In some cases, a
voxelization is performed to divide the point cloud space in a 3D grid of small regular cubes called
voxels (volume elements) whose resolution depends on the size of the grid cells [9,10]. On a different
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approach, the point cloud is decomposed into several two-dimensional vertical slices using the global
positioning system (GPS) time as auxiliary information [11] or into horizontal sections, parallel and
above the ground [12]. Other works analyze each scan line individually instead of considering the cloud
as a whole [13,14]. Removal of parts of the cloud that belong to objects that are not the focus of the
study [15] is another common technique. A segmentation procedure is also routinely used for point cloud
handling. Segmentation is the process of grouping the points of the cloud into segments: points in the
same region are given the same category and treated as a set [16]. Some segmentation techniques such
as graph cut [17], region growing [18], and 3D connected components [19] are also applied to facilitate
the handling of the point cloud.

Creating and updating the databases of vegetation elements and street furniture in urban environments
is an important issue in 3D city modeling, city management, and urban planning. Some cities such as
Melbourne. Australia, have created their own street objects database in order to improve the design,
amenity, and quality of the public environment [20]. The creation of these inventories with field visits
and photo interpretation of remote sensing data can be an expensive, tedious, and imprecise work. Thus,
recent studies have also started to address the automatic or semi-automatic computerized extraction of
urban objects. Generally, these types of elements, whether trees, lampposts, or signs, are cylindrical or
conical in geometry. In [21] and [22] two methods for detecting generic cylindrical elements using
Hough transform and Random Sample Consensus (RANSAC), respectively, were proposed. In [23] and [24]
the authors searched vertical isolated elements in a point cloud previously structured in voxels or regions
within a previous segmentation procedure. [25,26] developed different methods that also depend on the
geometry of vertical urban elements. In these cases; the detection is based upon the study of the three
eigenvalues obtained from the covariance matrix of each segment in which the cloud was previously
decomposed. In [27], trees were detected from @ priori information of geometric features, such as the
roughness and the point density ratio. Continuing this trend, in [28] a knowledge-based classifier that
uses the size, shape, height, and reflectance intensity information of each pole as descriptors is proposed.
Another useful technique consists of simplifying the 3D point cloud by projecting it in several 2D planes,
both horizontal and vertical, and searching and classifying street objects represented in the cloud. This
approach is followed in [29] where a method for extracting trees that voxelizes the point cloud and
studies layers at different heights is developed. Potential trees are represented by the voxels that are
isolated in consecutive layers. In [30] the authors segmented every scan line based on the distance
between adjacent points; clusters were merged to group the segments that represented the same pole-like
object. The classification between poles and non-poles was based on a priori information of geometric
features such as the length of the cluster, its shape, direction, and number of sweeps. In [15] an algorithm
for extracting lampposts was proposed in which a gridding process is applied to the point cloud. In every
cell of the grid, the height of the highest point is stored; those cells that are taller than an established
threshold are considered lampposts. An automatic method for extracting individual trees is presented
in [31]. It consists of separating trees from man-made objects by projecting 3D points on horizontal grid
accumulators at three heights and performing a cross comparison through these layers. In [32] the point
cloud was projected in planes orthogonal to the direction of the MLS trajectory before the extraction of street
curbs. Among the non-road segments, the street light poles were segmented using a pairwise 3D shape
context based on a priori information of the type of lampposts of the area.
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[n our approach a fully automated method for detecting pole-like objects and classifying them as trees
and man-made poles is developed. This method detects and classifies vertical urban elements from MLS
data by means of a three step procedure:

1. A preprocessing stage, including a reference frame transformation and a region of interest
(ROI) isolation. These procedures diminish the size of the original point cloud, the number of false
positives in the following procedures, and the computational effort of the successive stages.

2. Vertical urban elements detection using the Reed and Xiaoli (RX) anomaly detection
algorithm. Previously the preprocessed point cloud is organized in a pillar structure.

3. Vertical elements classification into two classes (trees and man-made poles) using an
unsupervised classification algorithm.

2. Method
2.1. Preprocessing

Three-dimensional point cloud data files from MLS data systems include not only X, Y, and Z point
coordinates but also additional information such as GPS time, scan angle, or reflectance intensity
information, for the millions of points contained in the point cloud. In the current paper, the
preprocessing step is divided into two main stages: (i) transforming the reference frame and (ii) removing
the parts of the cloud that are not of interest in this work (point cloud reduction).

2.1.1. Reference Frame Transformation

Point clouds registered by MLS sensors are properly geo-referenced in a global reference system by
a navigation system (GNSS) and an IMU, which provide coordinates within a global frame to every
registered point. The original coordinate system is now transformed by means of a translation and three
rotations into a local Cartesian coordinate system. The origin of the new reference frame is located at the
beginning of the MLS trajectory, the z-axis is coincident with the local vertical direction, and the x-axis is
coincident with the average direction of the vehicle. The y-axis completes the dextro-rotatory set, which
makes local (x,y,z) coordinates handier than the global ones.

2.1.2. Removing Uninteresting Points

In an urban environment, objects such as columns of buildings, fences, or decorative elements on
fagades that are not of interest in this work can be found; they are not urban elements and, in addition,
they can be wrongly detected as pole-like elements in the detection procedure. Normally, these elements
are located in distant areas of the mobile laser scanner data, inside buildings or local businesses;
meanwhile, vertical urban furniture and trees are located on the sidewalks and the surrounded area of
the road. To avoid these false positives, a method to remove all these uninteresting points from the
original point cloud was developed. The procedure consists of two steps: (i) an index is developed based
on geometric features to determine the vertical (mainly buildings and fences) and large horizontal
surfaces (roads and sidewalks); and (ii) the 3D connected components are segmented to group the points
that are part of the same surface.
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Geometric Index Definition

To identify the fagades of the point cloud, a geometric index was developed. Indexes developed from
geometric features of the cloud have been adopted in previous works such as [33]. in which an operator
based on a normal vector was introduced as a preprocessing step of an object recognition procedure. The
index elaborated in the current paper is called the Geometric Index (GI) and combines the information
provided by the normal vector and roughness values of every point of the cloud:

_INgil + [Nyil = [Nzi| 1

Gl = X — 1
= Nyl + INygl + [Nzg| ~ €F D

In Equation (1) (N, Ny, Ngz,) are the components of the normal vector N in the point P; and R; is
the roughness of the studied point. These values are measured from those points contained in a sphere
of radius r centered in the studied point (P;). Roughness (R;) is defined as the distance between the
studied point P; and the least square best fitting plane comprising P; and its neighborhood points inside
the radius r sphere [6]. The first term of Equation (1) combines the three elements of the normal vector
in a single value normalized in [—1, +1]. The behavior of the normal vector and its sensitivity to variations
in the neighborhood size have been analyzed in five urban element types, easily identified in urban
environments: facades, treetops, poles, roads, and cars. Significant differences have been found between

these elements. In those elements with a horizontal flat surface that are determined as a trend surface
(mainly roads and sidewalks), the vertical normal component (Nz,) takes higher values than the

horizontal ones N, and Ny,. The opposite occurs on fagades and fences, which are best fitted by vertical
surfaces, in which horizontal normal vector components (N, and Ny,) take greater values than the
vertical one. Other elements such as trees or cars present an irregular appearance because of their
irregular and heterogeneous shapes. The roughness is included in the denominator of the second term of
the GI Equation as an exponential to improve the separation between flat and rough surfaces. The lowest
roughness values correspond to flat surfaces while higher roughness values take place in those elements
with irregular shapes. According to the roughness study shown in Figure la, roughness R; takes values
around Om in flat elements and higher values in rough surfaces; thus, term % takes values around one

for flat surfaces and lower in points that are further from the fitted plane. Consequently, the second term
will not significantly affect the value of the GI in flat elements but will notably reduce it in rough
surfaces, which helps to identify these elements in the point cloud. Since e®t is close to one for flat
surfaces. this term has no effect on the GI but in contrast tends to substantially decrease the GI for rough
surfaces, when % is close to zero. To get the most suitable neighborhood size for the GI computation,

normal and roughness features were studied in different radii values at the test sites. For small
neighborhood radii (less than 20 cm), in many positions there are not enough point neighbors to compute
the roughness and normal vector, making the distinction unclear. With large radii (more than 150 cm),
the behavior of the GI in horizontal surfaces and elements at the ground level such as cars, pedestrians,
or containers was quite similar. The neighborhood must be small enough not to consider points that
belong to other elements but large enough to hold sufficient points to accommodate the interest features.
Furthermore, the computational time increases exponentially with the radii and makes the process
notoriously slow. Radii of 50 cm were set as optimal for extracting surfaces, because with this size (i) the
GI values of flat surfaces, both horizontal and vertical, are suitably separated from other urban elements
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and (ii) the processing time is acceptable. In Figure 1, the roughness and the GI with different
neighborhood sizes are shown. These studies were conducted in the two test sites. Figure 1a shows that
the lowest roughness values correspond to flat surfaces; while higher roughness values correspond to the
elements with irregular shapes. According to Figure 1b, the highest GI values, close to one, correspond
to building fagades and the lowest, around —1, to surfaces such as roads or pavement. Figure 2a shows
the GI of the point cloud used as test site B in a color palette in which red corresponds to higher GI
values, close to one, blue is reserved for the lowest GI values, and yellow and green represent the points
with an intermediate GI value, around zero.
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Figure 1. Behavior of the roughness (a) and GI (b) in five street elements for different
neighborhood radii.

Extraction of Vertical and Horizontal Surfaces

To extract the vertical and horizontal surfaces, two thresholds ay, and ay are set on the GI index.
Those points (P;) with a higher GI; than o, are considered to belong to a vertical surface; meanwhile,
points with a GI; below a are treated as horizontal surfaces. Point clouds obtained after thresholding
are composed of vertical and horizontal surfaces but also by points that satisfy these conditions that do
not belong to these surfaces. These points are usually isolated or belong to small urban elements, such
as treetops or pole-like objects.

The 3D-connected components were segmented in favor of (i) grouping the points that belong to the
same surface and (ii) removing isolated noisy points. Connected components analysis scans an image and
labels its pixels into components if they are connected to each other (either four or eight connected) [34].
Once all groups have been determined, each pixel is labeled with an identifier according to the
component the pixel was assigned to [35]. This technique is adapted to 3D point clouds structured in
octrees. In a similar manner as for 2D images, the 3D connected components analyze the connectivity
of the octrees and group in the same segment those that have a common side. In this case, the 3D
connected components segmentation is defined by two parameters: the octree level (OL) and the
minimum number of points per segment (MINP). The OL is related to the size of the octrees in which
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the point cloud is organized. It must be large enough for every octree not to be empty of points but
sufficiently small for different urban elements to belong to independent octrees. A priori knowledge of
the point cloud density is required to set the appropriate OL. Optimal OL has been empirically
established, by the authors, as five times the mean distance between the points of the cloud. The MINP
determines the number of components and their size. The objective of this step is removing isolated
noisy points, and only large segments that represent building fagades and pavement are considered. Once
the 3D connected components are segmented, the entire segments recognized as fagades are grouped
into a single point cloud. This operation is repeated for the segments that represent roads, resulting in
three point clouds: the original measured by the MLS sensor, one containing points that belong to
building fagades, and one with roads and sidewalks information (Figure 2b).

[ Building fagades

[ Road and sidewalks

(b)

Figure 2. (a) Gl in test site 2 and (b) fagades detected after the connected components segmentation.
Original Point Cloud Reduction

The isolated region coming from preceding procedures that represents the road is analyzed using
two-meter-wide sections, perpendicular to the x-axis of the local reference frame (Figure 3a). For each
section, the center of the road and the location of building fagades at both sides of the street are
determined by analyzing the histogram of these point clouds. In every section, the road center is
considered the modal class value in the y-coordinate histogram of the horizontal surfaces point cloud
(Figure 3b). Thus, it is possible to approximately recreate the path followed by the MLS sensor,
providing a kind of virtual MLS trajectory by joining the pavement center detected in each section.
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Additionally, for every 2-m-wide section, the alignment of the existing buildings is established by
searching the modal class values of the y-coordinate histogram at both sides of the road center. A new
point cloud is then generated by removing the points that lie beyond the fagade line at both sides of the
street (Figure 3d). This procedure automatically reduces the volume of the original point cloud, speeding
up the following processes and removing potential false positives caused by vertical building columns.
Furthermore, since this method is applied in narrow sections 2 m wide, it also accurately and precisely
eliminates building fagades in curved street sections or difficult areas, such as road intersections.
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Figure 3. (a) Cloud MLS analysis in two meters width sections; (b) Original point cloud;
(¢) Histogram of facades and horizontal surfaces extracted and (d) Point cloud reduced:
Isolated region of interest in green and removed facades in red.

2.2. Pole-Like Elements Detection
2.2.1. Point Cloud Structuring

MLS data is composed of several million points so analyzing every single element and its
neighborhood is computationally expensive and unproductive in terms of feature extraction. To speed
up the detection and extraction procedure, the point cloud obtained in the previous step is organized and
analyzed in a 3D vertical pillar structure pattern (Figure 4) [36].

Every point of the cloud is associated with a pillar, and all the points belonging to the same pillar are
considered a set. The point cloud is divided in a 2D (m % n) grid composed of m columns and n rows.
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Each cell of the grid represents a pillar. Every pillar has a unique identifier ID assigned from its (x.y)
coordinates in the 2D grid. Thus, for every cell ¢i = (xi, yi), with xi € [0, m] and yi € [0, n] corresponds
the identifier IDc = (m * yi + xi).
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Figure 4. Creation of the pillar structure in the studied point cloud.
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Figure 5. Pillar height is delimited until an empty voxel is found.

To avoid considering pillars as infinitely tall elements, the point distribution in each pillar is analyzed.
This is achieved by decomposing the pillars into voxels of regular heights. The process starts searching
the lowest occupied voxel, that is, the voxel with the lowest height that contains at least one point, and
continues studying the voxels above it until an empty voxel is detected. Once a discontinuity is observed,
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that is, the first empty voxel above the occupied ones, the points above the discontinuity, if any, are discarded
and not considered in the following steps. Thus, every pillar is formed by the points whose z-coordinate is
between the lowest occupied voxel and the first discontinuity (empty voxel), found in the pillar. After
this operation, every pillar is formed only by the elements connected to the ground level and
disconnected points that unnecessarily increase the weight of the pillar and may hinder the detection and
classification process are removed (Figure 5).

2.2.2. RX Anomaly Detection Algorithm

Once the point cloud has been structured, vertical urban elements are extracted and classified from
the pillars in which the point cloud has been decomposed. It is necessary to determine which pillars
contain a target element and which not. The RX anomaly detection algorithm is applied with this goal.
This algorithm is commonly used to detect outliers in hyperspectral images, but it can also be used in
multispectral images. The RX algorithm was developed by Reed and Xiaoli Yu [37]. It is based on the
Mahalanobis distance and follows Equation (2) [38]:

Srx(P) = (i — W Kz (i — 1) (2)
where r; is a vector in which considered features in the studied pillar P; are saved, p stores the mean
values of the considered variables in the set of pillars of the whole point cloud, K is its sample covariance
matrix, and L is the number of considered variables. i is the number of pillars in which the point cloud
is structured. The minimum value of i is zero (the first studied pillar) and the maximum value depends
on the size of the considered pillars The Mahalanobis distance is used to calculate how far each pillar is
from the center of the cloud formed by the other pillars, and the shape of the cloud is considered through
K. Mathematically, the RX algorithm performs some kind of inverse procedure of the principal
component analysis (PCA); this was proved by Alonso er al. [39]. Anomalies should be understood as
those elements whose spectral signature differs from the terrain in which they are. Anomalies are
significant features of special interest to image analysts. In a hyperspectral image, every band contains
information from a certain wavelength of the electromagnetic spectrum. The RX algorithm detects those
pixels for which, in any band of the hyperspectral image, exists an anomalous spectral response compared
with the response of the rest of the pixels of the image. MLS point clouds do not provide spectral
information, but some geometric features can be computed for each point and its neighborhood. These
geometric features have singular behaviors in vertical elements, quite different from other street elements.

In this work, the RX algorithm is applied to three features for every pillar of the point cloud. Height
difference and the points” spatial dispersion have been considered to detect those pillars that represent a
vertical urban element. To study the behavior of street objects in the variables, pillars that represent
horizontal surfaces and vertical elements were chosen as ground truth (Table 1).

Height difference (Ah): every pillar is formed by points whose z-coordinate is between the lowest
occupied voxel and the first voxel discontinuity. The height difference is referred to the distance, in
terms of the z-coordinate, between the lowest and highest points of all points belonging to a pillar. The
pillars in roads or pavement areas present a low height difference; however, vertical elements show a
larger height difference between their lowest and highest points. Most pillars of an urban point cloud
correspond to horizontal elements because they are the most common ones in streets environments. As
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can be seen in Table 1, the average value for the height difference in the full set of pillars is close to the
trend of horizontal elements, with a low height difference (around 0.15 m).

Spatial dispersion is calculated from x- and y-coordinate dispersion (ox, oy). The distribution of the
(x,y) coordinates of the points contained in every pillar depends on which element is contained in it. The
standard deviation of both planimetric coordinates (x.y) are the dispersion measures used as a geometric
feature. [n Table 1, the average (x.y) dispersion in roads and pavement is around 0.14 m; in pole-like
elements, the average dispersion is a bit lower, around 0.10 m.

The number of points contained in every pillar (density) in which the point cloud is organized has
been used in other works as a feature for extracting urban objects with satisfactory results [40].
Furthermore, surfaces that are orthogonal to the laser pulses show a higher density than those that are
nearly parallel [11], a useful property for differentiating orthogonal from parallel elements. However, in
the current work the accumulative number of points in every pillar was discarded and not included as a
feature for detecting vertical elements. This is because the number of points that represent an urban
element depends on the relative position of every element in relation to the MLS sensor and on the laser
scanner properties. The same urban furniture located at both sides of the street does not have the same
number of points in the 3D dataset even though they correspond to the same type of element. The closer
an element is to the sensor, the more points represent it in the point cloud. Incorporating the point
accumulation as a descriptor in an automatic detection procedure may cause etrors in the process due to
the different behavior of the elements shown in the point cloud.

To determine the relationship between the RX values and the features, the correlation between these
variables was studied (Table 2). The RX values and height differences had a high positive correlation
(0.72); meanwhile, the RX and both dispersions presented a negative correlation (-0.44 for ox and
—0.57 for 6y). The pillars with a AH higher than the average and dispersions (g and oy) lower than the
average have higher RX values. In Table 1, the mean value of the features (AH, oy, oy) in three RX
percentiles (P90, P95, and P99) are shown. As the correlation study suggested, the higher the RX values,
the higher the AH and the lower the 6 and 6y. The pillars included in the RX 99th percentile are
considered vertical urban elements since they perform a behavior similar to that of vertical elements’
ground truth.

Table 1. Behavior of horizontal surfaces and pole-like elements in the considered features
and average values among the full set of pillars and in percentiles 90, 95, and 99 of

RX values.
AH (m) G (m) Gy (m)
Ground Truth Horizontal surfaces 0.044 0.141 0.140
Ground Truth Vertical elements 2.78 0.103 0.098
Full pillars average 0.151 0.136 0.134
Poo 1.16 0.129 0.114
Pos 1.64 0.121 0.103
Pgg 2.96 0.106 0.102
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Table 2. Correlation matrix between RX and considered geometric features.

AH Ox Gy
RX 0.72 —0.44 —0.57

2.3. Pole-Like Elements Classification

Once the vertical pole-like elements are extracted they are classified into two categories: man-made
poles and trees. In this step each detected vertical element is isolated from the rest and treated as an
independent set of points. The correct selection of descriptors is a key point to obtain good results in the
classification procedure. In our case three descriptors for vertical element were computed: the roughness
of their points (both mean and dispersion values) and the scattering of radial distance (p) of the
cylindrical coordinate frame centered in the studied pole-like set of points.

Cylindrical coordinates: After the reference frame transformation performed in the preprocessing
step, the point cloud is referred to a local coordinate system. In the current step a new reference frame
transformation is performed for every detected pole, moving from the Cartesian local reference frame
(X.y,2) to a cylindrical coordinate system (p, ¢, z). For every detected pole-like object its own cylindrical
coordinate frame system is established. Its cylindrical axis coincides with the direction of Z-axis in the
local coordinate system and it is located in the (x,y) centroid of the set of the points that belong to the
pole-like object. From the cylindrical triplet of coordinates, the most interesting feature to accomplish this
classification is the radial distance (pp). This is because points that belong to man-made poles are closely
located around the vertical cylindrical axis than those that represent trees due to their thin appearance.
Thus, the dispersion of pp in these elements is lower than in trees.

Roughness: It has been observed that both mean and standard deviation of roughness have a different
behavior in each category, being their values significantly differ in both types of pole objects. Roughness
values of artificial poles are lower than trees due to their flat and smooth shape on their upper part,
contrary to the irregular and rough appearance of treetops, which cause higher values on these
descriptors. Additionally, dispersion of this parameter in poles is lower than in trees due to the
heterogeneity caused by branches and treetops

[n order to test whether the geometric descriptors taken into account are distinguishable and present
a distinctive behavior in the two considered classes, a separability study has been carried out. To achieve
this inspection a ground truth has been generated by identifying diverse elements of both categories in
the point cloud. There are several methods to measure the separability between variables; in this work
Jeffries-Matusita (JM) distance and transformed divergence, computed from Bhattacharyya distance (BD)
(3) has been used as separability measure [41]. In Equation (3), (114, 1) and (a4, 03) are, respectively, the
mean and standard deviation of classes a and b. JM distance (4) takes values in the range [0,2]. The higher
JM values, the higher the separability between the studied classes. As can be seen in Table 3, differences
between man-made poles and trees are considerably higher in the three examined variables, taken values
around 1.5 and 1.8 for mean and dispersion roughness respectively, and above 1.5 in the radial distance.
According with the given separability values, it is expected to obtain accurate results by the clustering
algorithm in the classification of man-made poles and trees.
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Table 3. Jeffries-Matusita distances for man-made poles and trees in the considered descriptors:
mean and standard deviation of roughness (itr and o,.) and standard deviation of p (6,).

Test Case Lr poles-trees Oy poles-trees Ty poles-trees
Dataset A 1.51 1.76 1.72
Dataset B 1.52 1.88 1.53

3. Test Cases

The efficiency of the proposed method was tested in two datasets measured by different MLS sensors.
In every test site the detection and classification procedure have been performed in order to test the
capability of the proposed method to extract and classify pole-like objects.

3.1. Mapping Data

3.1.1. Dataset A

The point cloud used as test site | represents a 300 m section of an urban street in Boadilla del Monte,
a city in western Madrid, Spain. This street is a type of a wide boulevard, with two lanes for each
direction, the tracks of a tram in the median strip, and sidewalks and parking areas on both sides of the
street. Features such as trees, shrubbery, traffic lights, lampposts, containers, bus shelters, pedestrians,
or vehicles are present in this scene. This dataset was selected to test the method in areas of the city with
wide streets and a great variety of vertical elements. The slope, 5% on average in this street section, also
affected the selection of this test site. This dataset comprises more than 3 million points and was acquired
with the IP-S2 Compact + system produced by Topcon Inc. The IP-S2 incorporates a dual frequency
GNSS receiver, an IMU, and a connection to external wheel encoders, which receive odometry
information. These three systems provide a highly-accurate 3D position for the vehicle. The IP-S2
Compact + scanner is equipped with five laser scanners that collect 150,000 points per second at a range
of 40 m, with a vertical field of view of 360°. It is also equipped with a panoramic camera that delivers
360° spherical imagery.

3.1.2. Dataset B

A dataset corresponding to test site 2 was measured by a Lynx Mobile Mapper system, produced by
Optech Inc. The Lynx scanner collects survey-grade LIDAR data at 500,000 measurements per second
with a 360° field of view (FOV). The Lynx also incorporates the POS LV 520, by Applanix, which
integrates an IMU with a two-antenna heading measurement system. LIDAR sensors are located in the
rear of a van. Each sensor registers points in a plane at 60° to the horizontal and 45° to the longitudinal
axis of the driving direction. This laser scanner provides absolute accuracies of 0.015° in heading, 0.005°
in roll and pitch, 0.02 m in the X, Y positions, and 0.05 m in the Z position. All values are determined
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via differential GPS post-processing after data collection using GPS base station data [42]. In this case, the
point cloud was composed of more than 6 million points, and the measurements were made along a
400-m-long street in Busto Arsizio, in the Lombardy region, in northern Italy. The street is narrow, and
there is one lane in each direction and sidewalks, parking areas, and buildings on both sides of the road.
Furthermore, there is a double barrier of leafy tall trees on both sides of the road that causes occlusions
in urban furniture, such as lampposts or traffic signs present in this test site. This site was chosen to test
the efficiency of the method in narrow streets covered by dense woody vegetation.

3.2. Reference Data

A ground truth was created in each of the two datasets in order to evaluate the results provided by the
detection and classification procedures. The target elements included in the detection ground truth
database are those with a pole-like shape, among which are lampposts, traffic signs, traffic lights, and
trees. In the classification reference data, pole-like objects are sorted into two categories: man-made
poles and trees. The reference datasets were composed of all the pole-like elements that were identifiable
in the original point cloud. Ground truth in Dataset A is composed of 241 pole-like objects; 141 were
man-made poles and 100 were trees. In Dataset B, a total of 228 pole-like elements were observed; 56
were trees and 172 artificial poles.

The validity of our model was quantified by means of completeness, correctness and quality
quantifiers, which follow Equations (5)~(7). respectively [43]. TP (true positive) are the detected poles
that matched the reference, FP (false positive) represents the detected poles that do not match the ground
truth, and FN (false negative) symbolize the poles that exist in the ground truth but are not detected by
the proposed method.

c ot poles matched the reference P

S5 = =
HHILEAEISS poles of reference TP+FN ©)

c " poles matched reference TP
orrectness = =
extracted poles TP + FP )
_ poles matched the reference TP
Quality = = (7)
extracted poles + unmatched reference TP + FP + FN

To quantify the results of the classification step, the classification ground truth was compared with
the labeled point cloud provided by the clustering algorithm. For every test site, a confusion matrix was
constructed from which five parameters well-known in the evaluation of classification procedures are
extracted: overall accuracy, commission and omission errors, and user and producer accuracy [44].

3.3. Algorithm Settings

One of the main purposes of this work was to develop automated extraction and classification
procedures, which minimize user interaction. To achieve this goal, the variables and the parameters must
be robust enough to be independent of the attributes of the point cloud and the configuration of the study
street. We determined that the critical parameters are (i) thresholds in the geometric index to extract
vertical and horizontal surfaces, (ii) the settings of the connected components segmentation, and (iii) the
percentile of RX values that represent pole-like objects. The sensibility of each parameter has been
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analyzed in order to establish the range of values that every parameter can take without affecting the
final result of the procedure (Table 4). Regarding RX percentile, which is the parameter that determines
the pole-like objects detection, its influence in the extraction has been studied and quantified for different
percentile values in order to determine the optimal ones. It has been concluded that RX percentile values
that provide the best quality rates are Pos s and Pso (Table 5).

[n the current work, the GI thresholds were set from the studies summarized in Figure 1, in which the
vertical surfaces (fagades) were detected for ay > 0.8 and horizontal elements (pavement and sidewalks)
were located when ax > —0.8. Thus, the vertical and horizontal surfaces were set to Gi > 0.8 and
Gli <—0.8, respectively. Regarding the 3D connected components segmentation, the MINP was set to
2000 points/region. For the octree level (OL), in the cases the mean distance between points was almost
4 cm, which implies an OL of 20 cm. Other parameters, such as pillar size and RX, are less dependent
on the characteristics of the cloud and had similar values in every case because they refer to the properties
of pole-like urban elements. For the test sites used in this work, the pillar size was established at 50 x 50 cm,
and the RX percentile was fixed at Poo. The same settings were applied to both test sites (Table 4).

Table 4. Algorithm settings used in the test sites A and B and range of values that every
parameter can take.

Algorithm Settings  Parameter Ranges

Vertical surfaces threshold (o) 0.8 [0.75;0.85]
Horizontal surfaces threshold (e) —0.8 [-0.9; -0.7]
Minimum number of points (MINP) 2000 points [2000; 3000]
Octree level (OL) 20 cm [15¢m ; 25¢m]
Pillar size 0.5m [0.4m; 0.6m]
RX Percentile Pgo [Pos 5; Poo]

4. Results
4.1. Dataset A

In the point cloud corresponding to this dataset, 241 pole-like elements have been observed among
trees, lampposts, traffic signs, traffic posts, and tram posts. The detection procedure extracts 233 vertical
elements (Figure 6a), of which 230 match with the ground truth reference and the three remaining
detected poles correspond with a working vehicle that has a similar structure to the pole-like objects
(Figure 7¢). Consequently, eleven poles were undetected, nine of them due to their position in occluded
or shadowed regions of the point cloud (Figure 7¢). The two others non-detected poles are traffic signs
of low height included in the reference dataset, but not high enough to be extracted by the method
(Figure 7a,b). According with these results, the detection step takes completeness, correctness, and
quality rates of 95.4%, 98.7%, and 94.3%, respectively (Table 5).

Regarding the classification procedure, 217 out of 230 vertical elements were correctly labeled
(Figure 6b), which means an overall accuracy of 94.35% (Table 6). About trees category, 85 trees were
correctly labeled and eight were wrongly classified as artificial poles due to their scarce and sparse
vegetation, similar to that of a man-made pole (Figure 7i). In terms of producer's and user's accuracy,
91.4% and 94.44% are obtained in trees category with commission and omission errors of 5.56% and
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8.6%, respectively. In relation to poles, five of 137 man-made poles included in the ground truth
reference were incorrectly labeled. These poles are close to trees and their branches modify the
appearance of the artificial poles, providing a scattered shape more characteristic of trees than of its own
nature (Figure 7f.g). This classification results in a commission and omission errors of 5.71% and 3.65%,
being the producer’s and user’s accuracy achieved 96.35% and 94.29%, respectively (Table 6). In an
overall evaluation of detection and classification procedures, 217 pole-like objects out of 241 were
correctly detected and classified, which means an accuracy of 90.04% (Table 7).

Man-made
poles

(b)

Figure 6. Results for the detection (a) and classification (b) procedure in Test Site 2.

Table 5. Completeness, correctness and quality achieved with the proposed detection
method in the two studied test sites with different RX percentile values.

Test Site A/
Observed Detected FP FN TP Completeness Correctness Quality
RX Percentile
97.5 241 347 111 5 236 97.93 68.01 67.05
98 241 314 78 5 236 97.93 75.16 73.98
98.5 241 252 17 6 235 97.51 93.25 91.09
99 241 233 3 11 230 95.4 98.7 94.3
99.5 241 144 2 99 142 58.92 98.61 58.44
Test Site B/ : ]
. Observed  Detected FP FN TP Completeness Correctness Quality
RX Percentile
97.5 228 359 136 5 223 97.81 60.43 61.26
98 228 314 91 5 223 97.81 68.83 69.91
98.5 228 244 21 5 223 97.81 91.39 89.56
99 228 222 2 8 220 96.5 99.1 95.7
99.5 228 119 | 110 118 51.75 99.16 51.53
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(h) (i)

Figure 7. (a,b) little signals appearance in a RGB image and in the point cloud,
(e.d) occlusion of a tree trunk, (e) in red, features detected in a work vehicle, (f.g) man-made
pole surrounded by tree branches in a RGB image and in the point cloud, (h) rough and
scattered man-made traffic light wrongly classified as a tree, and (i) tree with scarce and
sparse vegetation misclassified as a man-made pole.

Table 6. Confusion matrix of the classification procedure in test site A, where columns are
the ground truth and rows represent the classification results.

Dataset A Trees Poles z
Trees 85 5 90
Poles 8 132 140

= 93 137 230

Overall Accuracy = 94.35% (217/230)
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Table 6. Cont.
Dataset A Commission Omission
Trees 5.56% (5/90) 8.6% (8/93)
Poles 5.71% (8/140) 3.65% (5/137)
Producer’s Accuracy User’s Accuracy
Trees 91.4% (85/93) 94.44% (85/90)
Poles 96.35% (132/137) 94.29% (132/140)

Table 7. Quality evaluation complete procedure in Dataset A and B.

Correctly  Wrongly

Observed  Detected FP Undetected Labeled Labeled Accuracy
Test site A 241 233 3 11 217 13 90.04 (217/241)
Test site B 228 222 2 8 209 11 91.67 (209/228)

4.2, Dataset B

In this street section, 228 vertical elements were observed of which 220 were correctly extracted,
eight were undetected, and two were falsely detected. Thus, the completeness of the detection procedure
was higher than 96%, the correctness above 99%, and the quality higher than 95% (Figure 8a,b and
Table 5). Regarding the eight false negatives, the undetected elements, seven were discarded by the
method because they were a special kind of traffic sign, with a lower height than ordinary signs
(Figure 7a,b). The remaining missing pole element corresponded to a tree trunk, which was partially
occluded in the point cloud by a parked van (Figure 7d). The two false positives were detected from the
structure of a van that had a shape similar to pole-like objects, with high height differences and low
dispersion in (x,y) coordinates. The number of non-target pole-like elements detected would have
increased, especially inside the footprint of buildings, unless the original point cloud reduction step had
not been carried out. In relation to the classification step, in this road section the overall accuracy rate
was 95.0%, which means that 209 out of 220 vertical elements were correctly labeled (Figure 8c.d).
According to Table 8, ten man-made poles were mistakenly labeled as trees. Six of these poles were
surrounded by branches of nearby trees, which caused the scattered and rough appearance of their pole
in the cloud. The remaining four poles were low traffic lights, which were misclassified due to the
roughness generated by their upper light structure (Figure 7h). Only one tree was wrongly classified as
an artificial pole. The shape of this tree was similar to a pole, with a thin, tall trunk and barely scattered
branches. These results provide a commission and omission rate of 6.02% and 0.63% in the trees and
1.85% and 15.87%, respectively, in the man-made poles category. For accuracy, tree classification
achieved a producer accuracy of 99.36% and a user accuracy of 93.98%; meanwhile, the pole labeling
was 84.13% and 98.15% in the producer and user accuracy, respectively (Table 8). Thus, 209 vertical
elements out of 228 were correctly detected and labeled, which meant a global accuracy of 91.67% of
the complete procedure (Table 7).
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Table 8. Confusion matrix of the classification procedure in Dataset B, where columns are
the ground truth and rows represent the classification results.

Dataset B Trees Poles z
Trees 156 10 166
Poles 1 53 54

z 157 63 220
Overall Accuracy = 95.0% (209/220)

Dataset B Commission Omission
Trees 6.02% (10/166) 0.63% (1/157)
Poles 1.85% (1/54) 15.87% (10/63)

Producer’s Accuracy User’s Accuracy
Trees 99.36% (156/157) 93.98% (156/166)
Poles 84.13% (53/63) 98.15% (53/54)
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Figure 8. A zenithal and perspective view of the detection (a,b) and classification (c.d)
results achieved with the proposed method in dataset B.
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4.3. Comparison with Previous Methods

The results provided by our method were compared with other algorithms to evaluate its performance.
In the current literature, several methods focus on extracting urban objects. In [15] the target elements
were lampposts; trees were the main category in [27], and [23] extracted all types of pole-like objects
without differentiating between different types. The lack of a common dataset with a ground truth
associated means that every work uses its own dataset and creates a ground truth with visual inspections
of the field and the point cloud. In [23] a method for extracting pole-like objects is presented that
achieves a completeness detection rate average of 92.3% and a correctness of 83.8% in the four datasets.
Most false positives obtained by this method are detected inside the footprint of buildings. The method
developed by [30] achieved completeness and correctness rates of 77.7% and 81.0%, respectively, for
targets closer than 30 m to the scanner route, which means a mean accuracy of 79.3%. Only when targets
closer than 12.5 m were considered, these rates increased, achieving 83.5% and 86.5% for completeness
and correctness, respectively, and a mean accuracy of 85%. Most failures in the remotest parts of the
clouds were due to shadowed areas and low point density in these areas. [32] extracted lampposts in six
datasets achieving completeness rates above 99% and correctness between 97.55% and 99.01; the quality
index ranged from 96.74% to 98.21%. Despite the high accuracy, this method seems to be far from
automated due to the large number of thresholds to be set to conduct the extraction. Individual street
trees were extracted in [29] and accuracy rates above 98% were achieved. This method presents some
limitations because it is designed to be used in flat terrains, and all trees must be the same height from
the ground. Furthermore, this method achieves accurate results in individual street trees, but its
effectiveness in dense vegetated areas where treetops are merged has not been tested. In [26], the accuracy
in pole-like objects recognition was 63.9%, and in [31] the completeness and correctness achieved in
detecting individual trees ranged from 80.7% to 81.2% and from 70.2% to 75.5%, respectively.

The pole-like object detection method proposed in this paper achieved quality rates in the two datasets
of 94.3% and 95.7%, respectively, which are slightly higher than some of the previous methods. The
two datasets used to test this method were measured by different sensors in diverse scenarios, which
prove its robustness. This algorithm is independent of the scanning geometry and of the slope of the
street because the coordinates are transformed in the preprocessing step. In addition, this process detects
the horizontal and vertical surfaces in the point cloud and automatically delimits the regions of interest,
thus avoiding false positives inside the footprints of buildings. Furthermore, this process does not require
a priori information or previous training, and the number of thresholds has been minimized in order to
automate the procedure. However, certain problems may occur in remote areas of the cloud with low
point density and in trees whose trunks appear tilted. A previous work [30] proposed the development
of methods for separating tree trunks from other poles. In the current work, trees and man-made poles
were distinguished with a clustering algorithm. This classification procedure achieved an overall
accuracy higher than 90% in every data case.

5. Conclusions and Future Works

The main novelties of the present work are: (i) the development of a geometric index that extracts
horizontal and vertical surfaces and can also be used to reconstruct the MLS vehicle trajectory, (ii) the
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detection of pole-like objects by means of an anomaly detection algorithm and their classification in
trees and man-made elements without prior training data, and (iii) the definition of a robust procedure
that can be easily automated and provides accurate results with minimal user intervention.

The pole-like object detection method proposed in this paper achieved quality rates in the two datasets
of 94.3% and 95.7%, respectively, which are slightly higher than other methods. The two datasets used
to test this method were measured by different sensors in diverse scenarios, which prove its robustness.
This algorithm is independent of the scanning geometry and of the slope of the street because the
coordinates are transformed in the preprocessing step. In addition, this process detects the horizontal and
vertical surfaces in the point cloud and automatically delimits the regions of interest, thus avoiding false
positives inside the footprints of buildings. Furthermore, this process does not require a priori
information or previous training, and the number of thresholds has been minimized in order to automate
the procedure. However, certain problems may occur in remote areas of the cloud with low point density
and in trees whose trunks appear tilted.

The typology and casuistry of urban pole-like objects are very diverse, and there is probably no single
best method for detecting and classifying them in all cases. According to the results in this work, we can
conclude that this method is robust, useful for automatically detecting and classifying pole-like objects,
and provides satisfactory results regardless the heterogeneity of the area and the specifications of the
sensor and does not need the knowledge of the measured MLS trajectory. In the future, other anomaly
detection algorithms could be tested in the detection step, and other features such as laser intensity could
be introduced in the classification procedure to expand the classification to other types of urban elements.
The detecting procedure provided quality values of around 95% in two test sites, and the classification
step achieved an overall accuracy above 94%. In an overall evaluation of both procedures, more than
90% of the vertical elements were correctly detected and classified.

Acknowledgments

The authors would like to thank the Optech Inc. and TOPCON Inc. for providing the datasets to test
the proposed method.

Author Contributions

The authors, Borja Rodriguez-Cuenca, Silverio Garcia-Cortés, Celestino Ordoiiez and Maria C. Alonso,
designed the research, performed data analysis, and contributed with ideas, writing and discussion.

Conflicts of Interest
The authors declare no conflict of interest.
References and Notes

I.  Mundia, C.; Aniya, M. Analysis of land use/cover changes and urban expansion of Nairobi city
using remote sensing and GIS. Int. J. Remote Sens. 2008, 26, 2831-2849.

2. Dimitrakopoulos, G.; Demestichas, P. Intelligent transportation systems. IEEE Veh. Technol. Mag.
2010, 5, 77-84.

79



Chapter 3 — Urban furniture inventory

Remote Sens. 2015, 7 12701

12.

13.

14.

13.

16.

L7,

Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.; Kammel, S.; Kolter, J.Z.; Langer, D.;
Pink, O.; Pratt, V. Towards fully autonomous driving: Systems and algorithms. In Proceedings of
IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5-9 June 2011; pp 163—168.
Jiang, X.; Bunke, H. Fast segmentation of range images into planar regions by scan line grouping.
Machine Vis. Appl. 1994, 7, 115-122.

Hyyppd, J.; Jaakkola, A.; Chen, Y.; Kukko, A. Unconventional LiDAR mapping from air, terrestrial
and mobile. In Proceedings of the Photogrammetric Week, Stuttgart, Germany, 9—13 September
2013; pp 205-214.

Zogg, H.: Ingensand, H. Terrestrial laser scanning for deformation monitoring—Load tests on the
Felsenau Viaduct (CH). Int. Arch. Photogramm. Remote Sens. 2008, 37, 555-562.

Riither, H.; Held, C.; Bhurtha, R.; Schrider, R.; Wessels, S. Challenges in heritage documentation
with terrestrial laser scanning. In Proceedings of the 1st AfricaGEO Conference, Capetown, South
Africa, 30 May—2 June 2011.

Zhu, L.; Hyyppa, J. The use of airborne and mobile laser scanning for modeling railway
environments in 3D. Remote Sens. 2014, 6, 3075-3100.

Vosselman, G.; Gorte, B.G.; Sithole, G.; Rabbani, T. Recognising structure in laser scanner point
clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 46, 33-38.

. Douillard, B.; Underwood, J.; Kuntz, N.; Vlaskine, V.; Quadros, A.; Morton, P.; Frenkel, A. On the

segmentation of 3D LiDAR point clouds. In Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China, 9-13 May 2011; pp 2798-2805.

. Yang, B.; Fang, L.; Li, J. Semi-automated extraction and delineation of 3D roads of street scene

from mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2013, 79, 80-93.
Rodriguez-Cuenca, B.; Garcia-Cortés, S.; Ordoiiez, C.; Alonso, M.C. An approach to detect and
delineate street curbs from MLS 3D point cloud data. Autom. Constr. 2015, 51, 103—112.
Jaakkola, A.; Hyyppd, J.; Kukko, A.; Yu, X.; Kaartinen, H.; Lehtomiki, M.; Lin, Y. A low-cost
multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J.
Photogramm. Remote Sens. 2010, 65, 514-522.

Lehtoméki, M.; Jaakkola, A.; Hyyppd, J.; Kukko, A.; Kaartinen, H. Performance analysis of a pole
and tree trunk detection method for mobile laser scanning data. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 2011, 38, 197-202.

Yujie, H.; Xiang, L.; Jun, X_; Lei, G. A novel approach to extracting street lamps from vehicle-borne
laser data. In Proceedings of 19th International Conference on Geoinformatics, Shanghai, China,
24-26 June 2011; pp 1-6.

Rabbani, T.; van den Heuvel, F.; Vosselmann, G. Segmentation of point clouds using smoothness
constraint. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 248-253,

Golovinskiy, A.: Funkhouser, T. Min-cut based segmentation of point clouds. In Proceedings of
[EEE 12th International Conference on Computer Vision Workshops (ICCV Workshops). Kyoto,
Japan, 27 September—4 October 2009; pp 39—46.

. Belton, D.; Lichti, D.D. Classification and segmentation of terrestrial laser scanner point clouds

using local variance information. In Proceedings of ISPRS Commission V Symposium: Image
Engineering and Vision Metrology (IAPRS), Dresden, Germany, 25-27 September 2006.

80



Chapter 3 — Urban furniture inventory

Remote Sens. 2015, 7 12702

19.

20.

21

22,

23.

24.

23,

26.

27

28.

29.

30.

31,

32.

33,

Verma. V.: Kumar, R.; Hsu, S. 3D building detection and modeling from aerial LiDAR data.
In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, New York, USA, 17-22 June 2006; pp 2213-2220.

City of Melbourne Street Furniture Plan. Available online: http://www.melbourne.vic.gov.au/
(accessed on 22 June 2015).

Rabbani, T.; Van Den Heuvel, F. Efficient hough transform for automatic detection of cylinders in
point clouds. In Proceedings of ISPRS Workshop: Laser Scanning 2005, Enschede,
The Netherlands, 12—14 September 2005; pp. 60-65.

Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for point-cloud shape detection. Comput.
Graph. Forum 2007, 26, 214-226.

Cabo, C.: Ordoiiez, C.; Garcia-Cortés, S.; Martinez, J. An algorithm for automatic detection of pole-like
street furniture objects from mobile laser scanner point clouds. ISPRS J. Photogramm. Remote Sens.
2014, 87, 47-56.

Brenner, C. Extraction of features from mobile laser scanning data for future driver assistance
systems. In Advances in Giscience; Springer: Berlin/Heidelberg, Germany, 2009; pp 25-42.
El-Halawany, S.I.; Lichti, D.D. Detection of road poles from mobile terrestrial laser scanner point
cloud. In Proceedings of International Workshop on Multi-Platform/Multi-Sensor Remote Sensing
and Mapping (M2RSM), Xiamen, China, 10-12 January 2011; pp 1-6.

Yokoyama, H.; Date, H.; Kanai, S.; Takeda, H. Pole-like objects recognition from mobile laser
scanning data using smoothing and principal component analysis. Int. Arch. Photogramm. Remote
Sens. Spat. Inf- Sci. 2011, 38, pp. 115-120.

Rutzinger, M.; Pratihast, A.; Oude Elberink, S.; Vosselman, G. Detection and modelling of 3D trees
from mobile laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38,
520-525.

Li, D.; Elberink, S.0. Optimizing detection of road furniture (pole-like objects) in mobile laser
scanner data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 1, 163—168.

Wu, B.; Yu, B.; Yue, W.; Shu, S.; Tan, W.; Hu, C.; Huang, Y.; Wu, J.; Liu, H. A voxel-based
method for automated identification and morphological parameters estimation of individual street
trees from mobile laser scanning data. Remote Sens. 2013, 5, 584-611.

Lehtomiki, M.; Jaakkola, A.; Hyyppi, J.; Kukko, A.; Kaartinen, H. Detection of vertical pole-like
objects in a road environment using vehicle-based laser scanning data. Remote Sens. 2010, 2, 641-664.
Yao, W.; Fan, H. Automated detection of 3D individual trees along urban road corridors by mobile
laser scanning systems. In Proceedings of International Symposium on Mobile Mapping
Technology (MMT), Tainan City, Taiwan, 1-3 May 2013.

Yu, Y.;Li, J.; Guan, H.; Wang, C.; Yu, J. Semiautomated extraction of street light poles from mobile
lidar point-clouds. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1374—1386.

loannou, Y.; Taati, B.; Harrap, R.; Greenspan, M. Difference of normals as a multi-scale operator
in unorganized point clouds. In Proceedings of 2nd International Conference on 3D Imaging,
Modeling, Processing, Visualization and Transmission (3DIMPVT), Zurich, Switzerland, 13-15
October 2012; pp 501-508.

81



Chapter 3 — Urban furniture inventory

Remote Sens. 2015, 7 12703

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Di Stefano, L.: Bulgarelli, A. A simple and efficient connected components labeling algorithm. In
Proceedings of International Conference on Image Analysis and Processing, Venice, Italy, 27-29
September 1999; pp. 322-327.

Anagnostopoulos, C.N.E.; Anagnostopoulos, I.E.; Loumos, V.; Kayafas, E. A license plate-recognition
algorithm for intelligent transportation system applications. IEEE Trans. Intell. Transp. Syst. 2006,
7, 377-392.

Hu, H.; Munoz, D.; Bagnell, J.A.; Hebert, M. Efficient 3-D scene analysis from streaming data.
In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe,
Germany, 6-10 May 2013.

Reed, .S.; Yu, X.; Adaptive multiple-band CFAR detection of an optical pattern with unknown
spectral distribution. JEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760-1770.

Chang, C.-I.; Chiang, S.-S. Anomaly detection and classification for hyperspectral imagery. IEEE
Trans. Geosci. Remote Sens. 2002, 40, 1314—1325.

Alonso, M.C.; Malpica, J.A. The combination of three statistical methods for visual inspection of
anomalies in hyperspectral imageries. In Proceedings of 7th International Conference on Advances
in Pattern Recognition (ICAPR), Kolkata, India, 4—6 February 2009; pp. 377-380.

Hongchao, F.; Wei, Y.; Long, T. Identifying man-made objects along urban road corridors from
mobile LiDAR data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 950-954.

Kailath, T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans.
Commun. Technol. 1967, 15, 52—60.

Puente, 1.; Gonzilez-Jorge, H.; Riveiro, B.; Arias, P. Accuracy verification of the Lynx mobile
mapper system. Opt. Laser Technol. 2013, 43, 578-586.

Heipke, C.; Mayer, H.; Wiedemann, C.; Jamet, O. Evaluation of automatic road extraction. /nt.
Arch. Photogramm. Remote Sens. 1997, 32, 151-160,

Jensen, J.R.; Lulla, K. Introductory Digital Image Processing: A Remote Sensing Perspective,
2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1996.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Afttribution license

(http://creativecommons.org/licenses/by/4.0/).



Chapter 3 — Urban furniture inventory: urban features extraction and classification

3.2. Paper N°3: An approach to detect and delineate street
curbs from MLS 3D point cloud data

3.2.1. Summary

Following the research focus of the current chapter, focused on urban entities
detection from mobile laser scanner sensors, this article describes a methodology
for extracting street curbs from MLS point clouds. Roadside detection is useful
in several applications such as 3D urban modeling, road maintenance, and
autonomous navigation system development. This method consists of a point
cloud rasterization and a linear element search contained in the 2D raster
through morphological operators. A mechanism has also been developed for
extracting the upper and lower curb edges and estimating those invisible curbs
occluded by automobiles, containers, or other obstacles in the street. The
effectiveness of this method has been tested in urban areas with different
settings and frameworks and in datasets recorded by sensors with different
characteristics. The results were published in the scientific paper [76]. The
detection method provided accuracies higher than 95% in the studied areas and

correctly estimated over 96% of hidden curbs.

3.2.2. Quality Indicators

The current contribution has been published in the Automation in Construction
Journal, with an impact factor of 1.812 according to a 2014 JCR evaluation.
This journal is included in the top quartile of two JCR categories: Construction
and Building Technology and Civil Engineering. This paper has been cited by
other research works and, to date, has one reference according to WOS and SG
databases. The developed method was also presented at the 2015 EGU

conference [77].

Research works included in this chapter, related to urban furniture and

cartographic entities extraction and classification from MLS 3D point clouds,

are the fruit of the collaboration with the “GEOGRAPH: Geomatic and
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Graphic Computation” research group. This group belongs to the Department
of Mining Exploitation of the University of Oviedo. They have extensive
experience in 3D point cloud analysis and treatment, as demonstrated by their

publications in this research field [78, 79)].

The main objective of the works included in this chapter is the development of
methods to automatically extract information from 3D MLS point clouds and
trying to minimize user intervention. Developed algorithms are a useful tool for
urban furniture and vegetation inventory creation and updating in urban

environments.
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1. Introduction other approaches focus on road detection methods from Radio Detec-

The automatic detection of the various constructed elements in
roads and streets has become the subject of research in recent years
because of its practical interest. Accurate automatic detection saves
a great deal of time and money during the creation and updating of
cartographic databases [1]. Moreover, recently, there have been impor-
tant advances in the development of autonomous driving systems.
These systems require an accurate detection of road boundaries be-
tween which the autonomous vehicle [2,3] or pedestrian robot [4]
must drive. Precise road boundary detection will increase autonomous
driving systems safety and prevent accidents.

Several methods have been developed to detect roads based on im-
agery data. A thorough review can be found in [5,6]. Road extraction and
classification from images have been under research for many years.
The different approaches vary depending on the road model and road
representation selection which, in turn, are directly related with the
sensor resolution |7]. In low-resolution images, roads appear as thin
lines. In these cases, detection is reduced to center road extraction. In
high-resolution data, roads appear as two-dimensional areas rather
than one-dimensional line. In these cases, the boundaries of roads will
be detected instead the centerline [8]. In[1,6,9,10], some methodologies
to extract roads from aerial and satellite images are presented, Many

¥ Corresponding author. Tel: +34 918 85 67 48.
E-mail address: borjarodrigueze@eduuah.es (B, Rodriguez-Cuenca).

hitp://dx.doiorg/10.1016/f.autcon.2014.12.009
0926-5805,2 201 4 Flsevier BV. All rights reserved.

tion And Ranging (RADAR) and Light Detection And Ranging (LIDAR)
data [8,11]. Detection in urban environments could be difficult due to
the occlusions produced by high elements such as trees or buildings.
Those elements produce errors in detecting land covers because they
appear to overlap with the real land cover in the aerial images [12]
and cast shadows on the ground in laser pulse datasets.

In the last decade, several laser scanner sensors have been devel-
oped. These sensors provide unstructured data in the form of point
clouds with very high densities. This data open the possibilities for
an automatic feature detection of cartographic entities in urban envi-
ronments. Laser scanner sensors could be placed on aerial (aerial
laser scanner (ALS) or aerial LIDAR) or terrestrial platforms (terrestrial
laser scanner (TLS) or terrestrial LIDAR). Terrestrial LIDAR can be cate-
gorized into two types: static and dynamic. Static terrestrial LIDAR
data collection is carried out from base stations: A sensor is fixed in
the base station, from which the point cloud is sensed. Dynamic terres-
trial LIDAR or mobile laser scanner (MLS) sensors are installed in a mo-
bile platform, MLS sensors have a navigation system based on global
navigation satellite systems (GNSS) and inertial measurement units
(IMU). These devices determine the position of the mobile platform
and the direction and orientation of the sensor at every moment [13].
The GNSS and IMU data are combined with measures carried out by
the laser scanner sensor in order to obtain the final product: a geo-
referenced point cloud [14].

Laser scanner sensors provide additional and complementary infor-
mation to that provided by aerial images. TLS and MLS provide point
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clouds with a higher density than those detected with LIDAR flights
(ALS), and they are useful in detecting cartographic entities in urban
and rural areas. These instruments are very attractive in terms of docu-
mentation and inspection work due to the speed of data collection, their
accuracy, and the fact that they do not require direct contact with the
objects of interest for data collection | 15].

The goal of this work is to present a new method to detect street
curbs from 3D point clouds registered using a MLS sensor. These street
elements are interesting for the development of autonomous driving
applications and urban elements inventory purposes like pole-like
elements, traffic signals, etc. This method provides a solution to this
problem based on the projection of the measured point cloud on the
XY plane. Over that plane, a segmentation algorithm and linear ele-
ments search is carried out in order to determine the location of street
boundaries. The proposed method is valid in both straight and curved
road sections. Furthermore, a solution to the problem of detecting the
upper and lower edges of the curb and estimating occluded boundaries
in the measured point cloud is provided. The paper is organized as
follows: Section 2 summarizes the previous studies related to ours: in
Section 3 the proposed method to detect street boundaries is detailed:;
and Section 4 shows the results obtained in two study cases, both
performed in the north of Spain. Finally, our conclusions are given in
Section 5.

2. Related work

Many applications for terrestrial laser scanners have been reported
since the appearance of these systems. The 3D modeling of buildings,
caves and indoor areas [16,17], maintaining control over soil erosion
and rock fall hazards | 18], the geometry verification of tunnels [19,20],
the modeling and reconstruction of 3D trees [21], or the roughness
soil description [22,23] are some of the applications for which TLS's
have been used. Additionally, several applications for point clouds de-
tected via MLS sensors exist in the current literature, They have been
used in applications such vertical wall extraction, facade modeling,
building footprint detection [24-26] and the extraction of pole-like ob-
Jects, such traffic signs, lamp posts, or tree trunks [27,28],

The work presented in this paper is devoted to curb and street
boundary extraction from point clouds detected by MLS sensors. In
the current literature, there are some studies related to this issue.
Some of them use as input data point clouds obtained from stereo
vision. Recently, some authors have focused on the detection of road
markings, lines, and road sides in straight and curved areas based
on data obtained by stereo cameras [29,30]. Siegemund et al. [31]
present a real-time method to determine and reconstruct curbs from
3D point clouds created from stereo vision or measured by a MLS.
They determine the values of certain parameters about surfaces and
curbs that are included in a model. Detection is carried out in an
iterative procedure that involves two steps. First, the points of the
3D point cloud are assigned to curbs or adjacent surfaces; and then,
surfaces and curbs are reconstructed by fitting a cubic/three-order
polynomial. In [32], a robust algorithm that performs real-time lane
detection and tracking based on Random Sample Consensus (RANSAC)
is proposed. This algorithm works with images obtained by a camera
installed on a car.

There are also some methods in the current literature to detect curbs
and roadsides based on point clouds measured with TLS and MLS sen-
sors. In [33], a method to detect curbs using 3D scanner sensor data
is presented. The detection process starts with the voxelization of
the point cloud and the separation of those points that represent the
ground. Later, candidate points for curbs are selected based on three
spatial variables: height difference, gradient value, and normal orienta-
tion, Using a short-term memory technique, every point located in a
voxel whose vertical projection is in the road is considered a false posi-
tive and is deleted. Finally, the curb is detected by adjusting a parabolic
model to the candidate points and performing a RANSAC algorithm to
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remove false positives. The performance of the method depends on
the correct selection of the thresholds for each of the three variables
used. This method provides a detection rate of about 98% in two studied
datasets.

Weiss and Dietmayer [34] automatically determined the position of
lane markings, sidewalks, reflection posts, and guardrails by a vertically
and horizontally automotive laser scanner data. Curb detection applies a
third-order Gaussian filter to sharpen the vertical distance profile,
which defines the shape of the curb. This profile is divided into sections
with a certain width, forming an accumulative histogram. Candidate
curbs are found through a histogram-based algorithm to search those
slots of the histogram that are candidates to represent curbs and guard-
rails. Because not every candidate is a valid curb, the locations of real
curbs are determined by analyzing the heights, slopes, and interruptions
of every polygon,

Beiton and Bae [ 15] proposed a method to automatize the identifica-
tion of curbs and signals using a few steps. The rasterization of the 3D
point cloud into a 2D grid structure allows each cell to be examined
separately. The method first extracts the road; then cells which are ad-
jacent to the road are likely to contain curbs. Points in these cells are
used to determine the vertical plane of the curb, from which a 2D trans-
versal section is calculated. The top and the bottom of the curb are
determined as those points which are furthermost above and below
the line defined by the two furthermost points in the 2D section. This
procedure has several limitations. The proposed method would not pro-
vide good results detecting concave and non-horizontal roads; further-
more, the method could provide poor results for shorter or curved curbs
due to confusing edges with other points of the studied profile.

Yang et al. [35] carried out an edge detection by dividing the mea-
sured point cloud into two-dimensional sections using the GPS time at
which every point was registered. They applied a moving window to
these 2D sections to detect the roads and road boundaries. Curbs were
detected by analyzing the elevation and shape change in the moving
windows studied. They also presented a method to detect curbs in oc-
cluded parts of the cloud, but some problems in areas with irregular
shapes were detected. The value of the parameters and the length of
the moving window are critical to the performance of the proposed
method.

A recent work by Hervieu and Soheilian [36] describes a methed to
extract curbs and ramps, as well as reconstruct lost data in areas hidden
by obstacles in the street. A system for the reconstruction of road and
sidewalk surfaces is also proposed. They adjust a plane to a group of
points from the cloud and compute the angular distance between the
normal vector and the z vector. After that, a prediction/estimation
model is applied to detect road edges. The procedure requires the user
to manually select the curb direction, which is not always easy. This
method could fail in curved or occluded sections. To solve this problem,
they propose a semi-automatic solution in which the user must choose
some points of the non-detected curb to reconstruct these sections.

In [37] Kumar et al. developed a method to detect road boundaries in
both urban and rural roads, where the non-road surface is comprised of
grass and soil and the edges are not as easily defined by slope changes
alone. A 2D rasterization of the slope, reflectance, and pulse width
of the detected point cloud is carried out. Gradient vector flow and a
balloon model are combined to create a parametric active contour
model, which allows the road boundaries to be determined. Roadside
detection is carried out using a snake curve, which is initialized based
on the navigation track of a mobile van along the road section. The
snake curve moves using an iterative process until it converges on the
roadsides, where the minimum energy state is located. This method
has been tested in straight sections and provided good results, but its
performance in curved sections is unknown. The procedure is computa-
tionally complex, which could make the detection process too slow.

There exist some solutions for curb detection in commercial soft-
ware packages [38] but unfortunately the technical details could not
be found in the literature. These solutions are not automatic at all; the
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user must provide some initial elements to the software, especially in
curved sections.

3. Method

The proposed method of detecting and delineating curbs consists of
six steps. The flow chart of the procedure in Fig. | briefly describes every
step of the method. The inputs of the process are 3D point clouds mea-
sured by the MLS sensor and vehicle trajectory points obtained from the
GPS/INS systems, describing the trajectory of the vehicle. The outputs of
the procedure are the points of the curbs and lines representing the
curbs in occluded areas.

Every step of the proposed method is described in detail below:

3.1. Orientation and frimming

The point clouds obtained by mobile laser scanner (MLS) are proper-
ly geo-referenced in a global reference system by means of a navigation
system and an IMU, which provides coordinates within a global frame to
every point. In fact, the point clouds used in both study cases of this
work are geo-referenced using UTM projection in Zone 29 and WGS84
ellipsoidal heights. In order to ease and speed up every operation, the
original coordinate system is transformed by means of a translation
and two rotations into a local Cartesian coordinate system whose origin
is located at the beginning of the MLS trajectory, being the x-axis coin-
cident with the average direction of the vehicle and the zero height
plane at the height of the GNSS phase center system. It is obvious that
points belonging to curbs will be placed below the new XY plane after
the previous geometric transformation. Now a trimming process is
carried out to reduce the point cloud size: only points with local nega-
tive z-coordinate values are kept, being removed those points located
over the GPS antenna height.

3.2. Rasterization

The next step of the procedure consists of the rasterization of the
point cloud to reduce its dimension and make it more manageable,

| GPS/INS trajectory
| Point cloud ORIENTATION and TRIMMING J
RASTERIZATION

s« Point density
e« Height difference

v
SEGMENTATION

e Thresholding
s  Morphological processing

v

LINEAR ELEMENTS SEARCH
= Pixel grouping
s Linear features detection

v v

Point cloud data

EDGE DETECTION ESTIMATION OF NON-DETECTED
« 3D cloud recovery BOUNDARIES
e Curb edges detection e Delineation of non-

detected/occluded boundaries

Fig. 1. Flow chart of the proposed method to detect and delineate street boundaries.

moving from a 3D cloud to a 2D raster image. Moreover, in a raster
image, it is possible to apply image analysis techniques to detect those
pixels that contain points that belong to a roadside.

The efficiency of the detection process will depend on the pixel size
of the created image. Cell size also depends on the point density of the
point cloud. The resolution of the rasterized image could grow propor-
tionately with the point cloud’s density, but these also could require
more computation resources. In any case, the grid spacing must be
large enough to contain a significant number of points, but small enough
to allow only a small number of salient features in each cell [15]. To de-
cide the proper size of the cell, distances between contiguous pulses on
the pavement—just below the central rear point of the vehicle—were
measured. These points are located at a constant distance for any dataset
and have been used to compare nominal densities of different cloud
points. In this study the used cell size was 5 times the distance between
those contiguous pulses. We have found that this value allows a proper
detection of curbs with different scan densities and curb widths. For
each cell in the rasterization grid, two digital values (DV) are calculated
and stored: (i) the difference between the highest and the lowest point
of all points contained in the studied cell { resulting an image similar to a
normalized digital surface model (nDSM) [39]) and (ii) the number of
points contained in every cell. After the rasterization step two images
are available: one with DV representing the height difference (referred
to as nDSM from now on) and another in which each pixel's DV is the
number of points contained within it (referred to as image density
from now on).

3.3. Segmentation

3.3.1. Thresholding

In this stage a binary image will be created by thresholding the two
former images. Common curbs show heights of few tens centimeters
but they can vary depending on the country and type of street. Candi-
date curb pixels are chosen from the nDSM image by thresholding
(Eq. (1)). The maximum and minimum thresholds will be set as the
maximum curb height expected and the minimum value which allow
avoiding extraction of points from the road. In Table 1 can be found
the threshold values used for the test datasets.

Hmin<nDSM[i, j] < Hmax (1)

Surfaces that are orthogonal to the laser pulses show a higher densi-
ty than those that are nearly parallel to the laser pulses [28.35]. Thus,
pixels that represent the vertical face of the curb must have a higher
DV in the density image than those that represent a horizontal surface.
A second condition was imposed on the density image: Pixels that rep-
resent a curb must have a DV in the density image that is higher than an
established threshold (Dmin) (Eq. (2)).

Density image i, j] > Dmin (points/ pixel) (2)

With these two restrictions, a new binary image is created, where
candidate pixels are flagged with 1. The rest of the detection process
will affect only to these pixels. There will be more pixels, in addition
to those that represent curbs, which fulfill the conditions imposed, as
those that represent steps of stairways, low vegetation or cars. The

Table 1

Algorithm settings used in the test sites 1 and 2.
Pixel size 5= 5cm
Ah (Hmin and Hmax) 0.10 = pDSM < 0.20
Point density (Dmin) 5 points/pixel

Line width (pand q) 3 pixels < Line width < 6 pixels
Line percent {u} 30%
Region aspect ratio {columns/rows) {m and n} <1/3and =3
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(a) (b) (c)

Fig. 2. (a) Synthetic image representing a linear structure and three isolated pixels,
(b} Result of the morphological opening operation and (c) a nonlinear region.

following steps in the process will try to remove from the binary image
those 1-value pixels which do not belong to curbs.

3.3.2. Morphological processing

A morphological opening is applied to the binary image obtained in
the former step. This morphological operation is conceptually com-
posed of two phases erosion and dilation [40|. The erosion operation
will first remove those isolated pixels that do not represent a curb but
satisfied the conditions established in the thresholding step. During
the dilation operation, every pixel that is 4-connected with the candi-
date pixels of the original binary image is added to the curb candidate
set of pixels being labeled with 1.

An example of the performance of the opening operation can be seen
in Fig. 2. Dilation is applied to an image in which a linear structure
and three isolated pixels are presented (Fig. 2(a)). The linear element
represents a curb, and the isolated pixels correspond to those satisfying
the rules of the thresholding step but not representing a roadside. By
applying the morphological operator, this salt and pepper effect is
removed and linear structure grows (Fig. 2(b) ). The morphological pro-
cessing removes the isolated pixels wrongly considered as candidates
but not those groups of pixels that satisfy the imposed thresholds
and represent other features different from curbs. These errors will
be corrected in the next step through a study of the shape of the regions
in the binary image.

34. Linear elements search

3.4.1. Pixel grouping

Those curbs that define the roadside have a linear shape different
than other street elements. It is assumed that, in the binary image, pixels
that represent curbs are grouped forming linear structures. Pixels that
do not represent curbs are not grouped or are grouped without a partic-
ular distribution. Thus, every group of candidate pixels without a linear
shape will be deleted. The linear element search starts with a grouping
algorithm. Pixels with a value of 1 from the binary image that have
an edge in common are grouped in a unique region. Thus, the former
binary image becomes a segmented image. Every region created in
this step has its own identifier.

The grouping procedure consists of an image segmentation based on
a region-growing algorithm over the binary image [41]

3.4.2. Linear feature detection

In order to remove the noisy pixels, linear feature detection is carried
out in every region that was created previously. A common feature of
every target linear region is that its width is similar to the breadth of
the real-curb line it represents. Counting the number of 1-value pixels
in each column and in each row that exist in the window defined by
the region, we find that most of them must have a number of pixels
equal to the width of the target line. Thus, a diagonal 3 pixel width
real-curb line is represented in Fig. 2(b) and (c), showing a nonlinear re-
gion, which corresponds to a wrong detected region that must be re-
moved. Regions that represent curbs will be detected by imposing the
condition that at least a certain percentage of columns or rows must
have as many pixels as the width of the target line.

For each region, the number of rows and columns that have a width
between p and g pixels was determined via Eqs. (3) and (4), where r
and c represent the total number of rows and columns, respectively,
in the studied region. Every region that has a percentage of rows or
columns (rowspercent and colspercent in Egs. (5) and (6)) with a num-
ber of pixels between the width line thresholds that are higher than a
selected percentage (u) will be considered to be a linear feature. Those
regions that do not meet this requirement are discarded and not

(b)

(d)

r1i

(e)

(f)

Fig. 3. Steps in the linear element detection procedure for Test Sites 1 and 2. (a) and ( b) are the outputs of the threshold process, (¢) and {d] are the images obtained after first step of the

linear clements search, and (e} and (f) are the binary images based on curb detection.
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Fig. 4. (a) Profile corresponding to a curb before the rotation around the x-axis, the hori-
zontal and vertical surfaces of the sidewalks, curbs, and roads could be easily recognized;
(b) the same curb after the 45" rotation around the x-axis has been carried out; curb sur-
faces are now inclined +/— 45", The edges correspond with points where the slope sign
changes (those surrounded by red circles). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

considered to represent curbs.

rowslines =% ' with [p=<pixels per row <g| (3)
colslines = 3" with [p<pixels per col < q] (4)
rowspercent = S =nu (5)
colspercent = 53@ =n (6)

The linear feature detection step removes large regions that do not
represent curbs because their shape is not linear. Nevertheless, there
could be short nonlinear regions that, due to their small size, satisfy
the linear condition, even without representing a curb. To avoid that,
the relationship between the number of columns and rows is deter-
mined for each region. The computed region aspect ratio must have a
value between the established thresholds (m and n in Eq. (7).

#cols
m=< #ﬁwsn (7)

The final result of the linear feature detection is a binary image in
which 1-value pixels represent the location of curbs in the studied
area. Pixels with a DV = 0 represent the background. At this moment,
curbs and roadsides are located planimetrically (x and y coordinates).
Fig. 3 shows the results obtained in every step of the procedure for
one slice of every study test site. The final binary images obtained for
each site are shown in Fig. 3(e) and {F).

/+ AN

(a) (b)

3.5. Edge detection

3.5.1. 3D cloud recovery

Once the curb binary image has been produced, it is necessary to re-
cover the 3D point cloud to detect the upper and lower curb edges.
Thus, we move from the 2D raster image to a new 3D point cloud.
This new point cloud will be more manageable than the original one
because it is formed only by those points of the rotated point cloud
{obtained in Step 3.1}, which are contained in the 1-value pixels of
the binary image.

3.5.2. Edge point detection

From the cloud of candidate points, the upper and lower edges
of curbs are detected by performing a +/—45" rotation around the
x-axis, which is coincident with the average trajectory of the vehicle.
Thus, the surfaces of the sidewalks, curbs, and roads, formerly horizon-
tal and vertical, now have a slope of +/— 45", which is similar to the
profile of a mountain and a valley (Fig. 4). This is valid even the road
is sloped or flat due to the previous coordinate system change, This pro-
cedure helps in the edge curb extraction process because, in this way,
the problem is reduced to detect changes in the slope sign.

In the data file provided by the laser scanner, the point cloud is orga-
nized according to the GPS time at which every point was scanned. To
detect the points that represent the upper and lower edges of each
curb, every point is compared with the previous and the next scanned
points in the point cloud file. The slope of the vectors which links the
studied point with its neighbor points is computed. If both calculated
slopes have the same sign, the studied point represents a peintin a ver-
tical or horizontal surface (Fig. 5{(a) and (¢)). If the slopes have different
signs, the studied point represents a change in slope and corresponds to
an upper or lower curb edge (Fig. 5(b) and (d)).

The output of this step is a point cloud in which every point repre-
sents the upper or lower edges of the curbs that exist in the studied
area (Fig. 6). From the edge curb point cloud, it is easy to determine
those points in the scanned point cloud that belong to the sidewalk
from those that belong to the road.

3.6. Estimation of non-detected boundaries

It is not always possible to detect the curbs and road boundaries
based on MLS point clouds. Several obstacles on any given street may
obstruct the view of curbs (street furniture, vehicles, or pedestrians
that are between the MLS and the curb at the time of measurement).
In other cases, the roadside exists but is not detectable with the pro-
posed methaod. This occurs with access ramps at crosswalks: the curbs
in these areas are at the same level as the road, making it difficult to de-
tect the street boundary.

A method to estimate the locations of curbs and street boundaries is
presented in this step. To perform it, we assume that non-detected
boundaries must be aligned with their nearest neighboring boundaries
correctly detected. From the 2D mask obtained in Step 3.4.3, a regional

L \ /
\ y
[ ]
(c) (d)

Fig. 5. Graphics (a) and (c) represent cases in which the studied point ( the one in green color) does not represent a slope change; (b} and (d} show those situations in which the studied
point represents a slope change and thus represents a curb edge. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this arficle.)
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Fig. 6. (a) Curb section in the original point cloud, {b) curb section overlapped by detected curb edges (in white color), and (c) points detected as edges in a longitudinal profile marked

in Fig. 7(a).

study is carried out in order to determine the direction of every curb re-
gion. Thus, for every region, three directions are computed: its direction,
the nearest neighboring region's direction, and the direction of the
vector that joins the centroids of both regions. These three two-
dimensional vectors will determine the direction of both regions. If
every vector has the same direction, the studied regions are aligned,
and it is considered to be a roadside that was not detected by the pro-
posed method. The cross-product is used to verify the fact that the
vectors have the same direction. If the vectors are collinear, the cross-
product between each pair must be null. In this case, we assumed
that, between the two regions, a non-detected curb section exists
(Fig. 7(a)). The proposed method cannot determine the existence of a
non-detected boundary for those regions that are not collinear due to
the fact that their directions are different (Fig. 7(b)).

The automatic method presented here for hidden boundaries
curb estimation works properly only in straight curb sections. Other
works, like those of Hervieu and Soheilian [36], have proposed a semi-
automatic method for curb detection in curved sections, in which the
user must supply the curb direction to the algorithm.

4. Test cases
4.1. MLS sensor
To determine the accuracy of the developed method, it was tested in

two test sites acquired with the Lynx Mobile Mapper system, produced
by Optech Inc. The lynx scanner collects survey-grade LIDAR data at

\
X X
\/;’ u
(a) (b)
Fig. 7. (a) Collinear regions [ in black) detected and the boundary estimated between both

(in red); (b} non-collinear regions detected in the original point cloud with the proposed
method.
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500,000 measurements per second with a 360° field of view {FOV).
The Lynx also incorporates the POS LV 520, by Applanix, which inte-
grates an IMU with a 2-antenna heading measurement system. LIDAR

Fig. 8. Test Site 1: (a) aerial image, (b) street appearance and (c) measured point cloud.
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sensors are located in the rear of a van. Each sensor registers points in a
plane at 60° to the horizontal and 45 to the longitudinal axis of the
vehicle (i.e. driving direction). This laser scanner provides absolute ac-
curacies of 0.015° in heading, 0.005" in roll and pitch, 0.02 min X, Y po-
sitions, and 0.05 m in Z. All these values are determined via differential
GPS post-processing after data collection using GPS base station data
[42]. One advantage provided by the MLS is the possibility of generating
a geo-referenced point cloud combining LIDAR sensor data with IMU
and a GPS installed in the mobile platform. The spatial resolution of
the point cloud depends on the scan frequency of the LIDAR heads,
the pulse repetition rate, the speed of the vehicle, and the distance to
the measured objects [43].

4.2. Algorithm settings

The accuracy of the curb detection is directly related to the correct
selection of different parameters. These settings depend on the attri-
butes of the input point cloud and the environment of the studied
road. We have realized that the critical parameters are (1) the pixel
size of the grid, (2) the height difference restrictions in the threshold
step, and (3) the point density. For the test sites used in this work, the
pixel size was established at 5 x 5 cm. The characteristics of the existing
curbs directly affect the height difference (Ah) parameter. Typically, the
curb height is about 0.15 m, but it can vary depending on the studied
area. The minimum ( Hmin) and maximum (Hmax) curb height thresh-
olds for both test sites were set to 0.10 m and 0.20 m, respectively. The
point density (Dmin) in each pixel was set to 5 points/pixel. Other pa-
rameters, such as line width, line percent, and region aspect ratio, are
less dependent on the characteristics of the cloud. They take similar
values in every case because they refer to the properties of lines rather

than those of the curbs. The line width (p and g thresholds) was set be-
tween three and six pixels, and the line percent () was set to 80%. The
region aspect ratio was fixed at 3 to 1. The values of the parameters for
the study cases are listed in Table 1. The same settings were applied to
both test sites. In both test sites the cloud is splited in 150 m long slices.
Every slice is computed separately in order to decrease the computa-
tional cost of the procedure. This split makes possible to detect curbs
in curved sections.

4.3. Test Site 1

The point cloud used in Test Site 1 was measured in a polygonal park
close to Vigo, in the north of Spain. In this area, there is an industrial-
type building with an area of 9000 square meters. Around it, thereis a
two-way road that is 800 m long with both, straights and curved sec-
tions (Fig. 8). The presence of cars, trucks, and other obstacles, such as
fences, lampposts, and poles, makes the roadside detection more diffi-
cult. The detected point cloud consists of more than 45 million points.
This test site was used to check the capacity of the proposed method
to detect curb edges.

4.3.1. Reference data

To evaluate the accuracy of the curb detection, a manual extraction
of the road boundaries from the original point cloud was carried out.
It was performed by digitizing the observed road borders from
the point cloud as the ground truth data. For Test Site 1, the ground
truth has a length of almost 1098 m. The evaluation of the results
was carried out by comparing the curbs extracted via the proposed
method with the previously prepared ground truth. This was per-
formed by using three indices commonly used in the evaluation of
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Fig.9. (a) The point cloud formed by the upper and lower edges detected (in red), overlapping an aerial image of Test Site 1 (b), () and (d) represent points detected as upper and lower
edges in A, B, and C details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2 area (Fig. 9(a)). The result of the curb edge detection method is shown
Accuracy of the detection method at Test Site 1. in three detailed images, which represent the curved and straights sec-

TestSite | Algorithm- User-detected FP EN P =AD — P tion of the test site {Fig. 9(b), (] and (d}}.
detected (AD) The proposed method identified 1072.5 m as curb from the Test Site
Data-present 10725 10978 181 253 1054.4 1 data, of which 18 m represents false positives caused by low vegeta-
curbs tion and elements with geometry similar to those of curbs, such as car
Completeness  97.65% Comrectness 98313 Quality 96.05% bottoms and steps. 1054.5 m of the detected curb matched the ground

road detection: completeness (Eg. (8)), correctness (Eq. (9}), and
quality (Eq. (10)) [11.4445]

length of matched reference P

Completeness = == oth of reference  — TP FN (8)
_ length of maiched extraction TP
Curectness = length of extraction ~ TP+FP @
Quality — length of matched extraction
" = length of extracted + unmatched reference
TP !
= TP FPTEN (10)

where TP (true positive) represents the length of the curb detected
that matches the reference roadside, FP (false positive) represents
the length of the detected curbs that do not matching with the ground
truth, and FN (false negative) represents the total length of the unde-
tected curbs that exist in the ground truth.

4.3.2. Results
For a visual analysis of the results obtained in Test Site 1, the de-
tected curbs have been superimposed on an ortho-image of the studied

truth curb, and 25.3 m that belonged to the ground truth were not de-
tected via the method due to the occlusion of the curb by grass or low
vegetation. In these cases it is not possible to achieve the detection
because of the change in the curb geometry. The parameters used to
measure the accuracy of our method are written in Table 2_ It can be
appreciated that they are all above 96%.

4.4. Test Site 2

Test Site 2 corresponds to a 250 meter section of Rua Progreso Street
in Qurense, a city in the north of Spain. This is a typical urban area that
has a road with structured road boundaries in the form of curbs and
ramps at crosswalks and garages (Fig. 10). These elements and others,
such as cars and pedestrians, create shadows in the point cloud. Test
Site 2 was used to test the performance of the proposed method of esti-
mating those non-detected boundaries. The point cloud corresponding
to Test Site 2 consisted of more than 18 million points.

4.4.1. Reference data

The results obtained for the detection and estimation procedures
at Test Site 2 were evaluated by comparing the extraction with the
two ground truth datasets. One ground truth was composed by curbs
observed in the point cloud and it consists of more than 370 m of
curbs. The other ground truth was formed by occluded curbs and

Fig. 10, Test site 2: (a) aerial image, {b) street appearance, and (c) measured point cloud.
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Fig. 11. (a) The detected curbs {green color) and estimated boundaries {red color} for Test Site 2; (b) and (c) show the results obtained in details A and B. ( For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

ramps at sidewalks and garages. It consisted of more than 115 m and
was used to evaluate the results of the curb estimation method.

4.4.2. Results

The detected curbs (green lines) and estimated sections (red lines)
were rasterized and superimposed on an ortho-image of the studied
area (see Fig. 11) in order to improve the visualization, Most of the de-
tected segments in Fig. 11 are parallel to the vehicle trajectory, although
a segment perpendicular to that is shown in the lower right corner of
the image (c).

According to the results listed in Table 3, almost 358 m of curb was
detected using our algorithm, of which only 2 m did not match the
data present in the ground truth curbs. However, around 15 m that
existed in the ground truth were not detected. According to these re-
sults, completeness, correctness and quality obtained were 95.9%,
99.36%, and 95.31%, respectively. Regarding the hidden boundaries,
112 m of the 116 m of hidden boundaries were delineated. Almost

Table 3
Accuracy of the detection and estimation method at Test Site 2.

Test Site 2 Algorithm  User P FN TP =AD-FP
detected detected

Data-present curbs 3575 3704 23 152 3552

Data-hidden boundary 111.8 1155 0 7 111.8

Test Site 2 Data-present Curbs Data-hidden boundaries

Completeness 95.9% 96.8%

Correctness 99.36% 100%

Quality 95.31% 96.8%

4 m of hidden boundaries in the ground truth were not estimated via
the method. These FN are located in curved sections. There was no FP
in the estimation procedure, meaning that the completeness and quality
values took the same values, providing a correctness of 100%. Almost
97% completeness and quality were achieved for the boundary estima-
tion method.

5. Conclusions

In this paper, a novel method to detect and estimate curbs and street
boundaries from MLS data is presented. The method begins with a coor-
dinate system transformation and a rasterization that simplify the
calculations involved and allow the use of image processing techniques
to define linear features. Finally, edge points are detected by rotating the
point cloud and looking for those points that represent a slope change,
The upper and lower edges of the curb are extracted, resulting in a 3D
representation of the road boundaries. In addition, an estimation of
the boundaries is carried out in occluded areas located between straight
segments by means of the direction and distance analysis of the neigh-
boring detected segments.

The method was tested in two areas, one of which corresponded
to an urban environment and the other corresponded to an industrial
environment. The results obtained show completeness, correctness,
and quality values higher than 95% for both detected and estimated
boundaries. These results are quite better than the ones provided by
other methods as [35] and [46] and are accurate enough for an autono-
mous driving system. From the results obtained at both test sites, it is
possible to conclude that the proposed method is valid { 1) for detecting
the change of shapes road boundaries both in straight and curved road
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sections, (2) for accurately estimating the location of occluded curbs
and undetected straight boundaries, and (3) for accurately determining
the upper and lower curbs' edges. However, it is still difficult to deal
with occluded curbs in curved sections and with boundaries without
3D shapes. In the near future, other variables as the topology or the tex-
ture will be incorporated to enhance the estimation method.
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CHAPTER 4

Post-classification processes

Hoy veras, la luz que inunda todo
verds, por fin, el sol sobre nosotros
verds el cielo, grande azul y limpio

vas a ver donde se unen cielo y mar

con la vida en tus 0jos.

El valle de Aran, Carlos Niinez

The final quality of a classification process depends on the discriminating
variables, the quality of the training fields in the supervised classification and
the accuracy of the classification algorithm. All classification processes, however,
share common aspects. Thus, when a classification procedure is applied to an
image, the classified image usually leaves a small number of isolated, poorly
classified, or unclassified pixels. This results in a noisy, salt-and-pepper

appearance due to the inherent spectral variability encountered when applied on
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a pixel-by-pixel basis [6]. In such cases, it is desirable to homogenize the

classification by “smoothing,” that is, reassigning the pixels to another class.

One means of classification smoothing applying a majority filter. In such
operations, a moving window is passed through every classified pixel. If the
label of the pixel is not in the majority class of the window, its identity is
changed to the majority class. If there is no majority class in the window, the
identity of the center pixel is not changed. As the window progresses through
the data set, the original class code is continually used, not the modified labels
from the previous window position. (Eastman, 1995). Majority filters can also
incorporate some form of class and/or spatial weighting function. Certain
algorithms can preserve the boundaries between land cover regions and also
involve a user-specified minimum area for any given land cover type that will be

maintained in the smooth output [6].

4.1. Paper N°: A spatial contextual post-classification

method for preserving linear objects in multispectral

magery

4.1.1. Summary

Classification algorithms are useful for the segmentation and cartographic
production from aerial and satellite multispectral images. Also, classification is
commonly the first step in cartographic entities extraction from remotely sensed
data. A pixel-by-pixel image classification usually produces high-level error as
noise. Including spatial information in classification processes is useful for
reducing salt-and-pepper effect in these procedures. The use of probabilistic
label relaxation (PLR) method including second-order statistics has been

advantageous in reducing the classification errors (references).

This article described a modified PLR method to extract linear structures, such
as roads, sports facilities, and buildings. The modifications included adding

contextual information and imposing directional information from aerial or
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satellite images on the third-order probability statistics (PLR3) joint. The
performance of the proposed method has been tested on synthetic and real
images. Synthetic images with full and accurate ground truth facilitate complete
numerical analysis of the accuracy and kappa coefficient of the different
methods. Real aerial and satellite images can allow the potential of the proposed
methods in real situations to be determined. The results show the suitability of
using post-classification algorithms to improve image noise. The proposed PLR3
method is useful when it is important to retain lines or edges. It has been shown
that the proposed method defines linear structures better than the Majority and
classic PLR methods due to the inclusion of third-order statistics within the

likelihood probabilistic calculation.

4.1.2. Quality Indicators

The current research has been published in the IEEE Transactions on
Geoscience and Remote Sensing Journal, with an impact factor of 3.514
according to a 2014 JCR evaluation. This journal is indexed in different JCR
categories, such as Geochemistry & Geophysics; Engineering, Electrical &
Electronic; Remote Sensing; and Imaging Science & Photographic Technology.
In all of them, it appears in the top quartile and is even situated in a very
important position within the top quintile in the last three categories. The
contribution of this article has been cited by other research works and has been
referenced two times in the WOS and five in the SG. Partial results and details
of this methodology have been published in other journal papers and conferences
such as the 2011 Spanish Remote Sensing Association Conference [80].

All the contributions in this research field have enabled the development of
knowledge in the area of fusion information, highly relevant in most intelligent

systems, decision-making, and image processing.
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A Spatial Contextual Postclassification Method for
Preserving Linear Objects in Multispectral Imagery

Borja Rodriguez-Cuenca, Student Member, IEEE, Jose A. Malpica, and Maria C. Alonso

Abstract—Classification of remote sensing multispectral data is
important for segmenting images and thematic mapping and is
generally the first step in feature extraction. Per-pixel classifica-
tion, based on spectral information alone, generally produces noisy
classification results. The introduction of spatial information has
been shown to be heneficial in removing most of this neise. Proba-
bilistic label relaxation (PLR) has proved to be advantageous using
second-order statistics; here, we present a modified contextual
probabilistic relaxation method based on imposing directional
information in the joint probability with third-order statistics. The
proposed method was tested in synthetic images and real images;
the results are compared with a “Majority” algorithm and the
classical PLR method. The proposed third-order method gives the
best results, both visually and nomerically.

Index Terms—Classification smoothing, contextual classifica-
tion, relaxation methods, remote sensing.

[. INTRODUCTION

LASSIFICATION of multispectral image data based on

spectral information is used in analyzing remotely sensed
data. The objective of the classification process is to categorize
all pixels in a satellite or aerial image into one of several
land cover classes. This categorized data may then be used to
produce thematic maps of the existing land cover present in an
image. There are two main classification methods: supervised
and unsupervised. In the former, samples of the information
classes (land cover type) of interest in the image, called training
sites, are identified [1]. From these training areas, statistics are
first calculated and then used to classify each independent pixel
of the entire image being examined. Decision rules are then ap-
plied: these can be nonparametric, such as minimum Euclidean
distance, or parametric, such as Gaussian maximum likelihood
(ML). In unsupervised classification, often referred to simply
as cluster analysis, a computer algorithm partitions the image
into self-defining spectral clusters. Supervised or unsupervised
classification methods have generally used only information
obtained from individual pixels; therefore, the final thematic
maps tend to be somewhat noisy, in what is known as salt-
and-pepper classified images [2], [3]. Pixels generally belong
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to cover types that form a g phic region or cartographic
entity; consequenily, pixels that are close together are more
strongly related than those that are spatially distant. A normal
approach in identifying land cover classes is to complement the
use of spectral information with spatial information obtained
from neighboring pixels.

Improving per-pixel classification by incorporating both
spatial and spectral information involves a two-stage process:
First, a spatial filter is applied to achieve more homogeneous
regions; second, a per-pixel classification algorithm is applied,
as reported by Yildirim et al. [4]. These authors applied an ML
algorithm to classify land cover and achieved an improvement
over the extraction and classification of homogeneous object
algorithm presented by Ketting and Landgrebe [5].

It is more common to apply the opposite procedure—
postprocessing-rather than preprocessing. i.e., classifying by
first using a per-pixel classification algorithm and then per-
forming a postclassification operation. One of the simplest
postprocessing operations is the application of a Majority filter
[6], [7]. To conduct this operation, a moving window is passed
over each pixel in the classified image. If the class assigned
to the central pixel in the window is not the majority class of
the window, the pixel’s class is changed to the majority class.
If there is no majority class, the identity of the center pixel is
not changed. As the window progresses through the image, the
original class from the previous classified image is used, not the
assigned class as modified from the previous window position
[8]. Some authors have applied modifications to the Majority
filter and achieved some improvement, such as [9], which used
a Landsat Thematic Mapper image with an adaptive Majority
filter, resulting in some reduction in classification errors.

In recent decades, several approaches have been adopted for
incorporating contextual information into the classification of
remote sensing fields, such as Markov random fields (MRFs)
[10]-[14], knowledge-based methods or fuzzy methods [15]-
[17]. probabilistic label relaxation (PLR) [18], [19]. and hy-
brids, combining other methods [20]. In this paper, the term
contextual information will refer only to spatial information,
even though this concept could also be extended to other types
of miscellaneous information (ancillary data) associated with
the current pixels, as proposed by some of the aforementioned
studies.

In postprocessing methods, linear features are usually re-
moved when trying to reduce the speckled appearance in a
classified image, as found by Myeong et al. [21]. These authors
observed this phenomenon when applying the Majority filter
in postprocessing. In this paper, we develop a postprocessing
approach that aims to preserve linear features.

This paper is organized as follows. Higher order statistics
are described in Section II. The methodology applied with the

0196-2892/$31.00 © 2012 IEEE
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proposed method is described in Section III. The results
obtained using synthetic and real images are presented in
Section IV. Finally, our conclusions are given in Section V.

[I. HIGHER ORDER STATISTICS WITH PROBABILISTIC
LABELING RELAXATION

Natural images exhibit statistical regularities that differen-
tiate them from images in which pixels have been generated
randomly; moreover. the human visual system appears 1o have
evolved to exploit such statistical regularities. Many studies
support the notion that our visual system presents an efficient
means for coding the statistical structures found in nature
[22], [23]. First-order statistics deal with single pixels and
do not take into account relationships between neighboring
pixels in an image. This first order implicates the histogram,
mean, standard deviation. skew, and kurtosis of gray levels in
an image. Second-order statistics examine relationships and
regularities between pairs of pixels in an image. Examples
include image gradients and power spectra, which are computed
in Fourier space and are related to autocorrelation functions,
Third-order statistics examine ternaries of pixels, as in the
work of Gagalowitz and Ma [24], using co-occurrence matrices;
these authors showed that such a third-order model was able
to capture most of the information about macroscopic planar
textures such as wool, sand, etc.

Studies on PLR focus on measuring second-order statistics
or the covariation between the properties of paired pixels, such
as their grayscale levels [19]. We show that it is practical to
directly measure higher order statistics using the strategy of
estimating the probability along different directions. Structural
information about linear features can be retrieved through
statistics of triples of pixel values (third-order statistics).

In the following equations, the procedure for supervised
classification is considered from a statistical perspective. Let
the classes be

Wi, i=1,...,C

where (' is the total number of classes.

( » )
Pm T ]
Rm

is the probability of class w; occurring, given that pixel m and
the neighborhood R,,, surrounding pixel 1 have been observed.
In principle, a label is influenced by the real label of all other
labels in the image, but in order to model the phenomenon of
spatial context. we will here suppose that a label is influenced
only by a few close neighbor pixels. We also suppose that this
property of being influenced by only a small neighborhood is
independent of the position in the image of the actual pixels.
This is similar to the properties established in MRF [25].
Pixel i is assigned to class w; if

W, s
T = =>p oL v B 2
P (Nm) = Pm (N-m.) 1 ?é_! (2)

From Bayes’ theorem, we have

Pm (;_r) x pw;(n]‘) P (:‘ ) (3J
Tre m

100

i =1,...,C (1)

where p.. (m) is the class conditional probability for class
w; given pixel m and p(w;/R,,) is the prior probability of
the w; class for neighborhood 1,,. This is a measure of how
appropriate it is to assign pixel m to class w;, in view of the
current neighborhood surrounding m, defined as N,,,.

Following Richards and Jia [26]. the question is how to
find a value for p(w;/N,,). These authors have modeled this
probability by both MRF and PLR with Dempster—Shafer; they
found the latter to be better than the former. We will present a
modification of the latter algorithm with a third-order statistic.
Herein, the original PLR as applied by Richards and Jia [26]
will be called PLR2 (as it utilizes second-order statistics), and
our proposed method will be called PLR3.

Mahalanobis Classifier and Labeling Relaxation PLR?2

The term p(w; /R, ) in (3) is the initial estimate of the proba-
bility of each pixel’s label for a neighborhood ¥,,,. These prob-
abilities can be assigned from a previous classification based
on pixel information alone. In our case, this was done using
the Mahalanobis classifier. Per-pixel classification approaches,
such as minimum Euclidean distance and ML, have been widely
used in many remote sensing applications. The Mahalanobis
classifier has been widely applied in the remote sensing com-
munity [19], [27]-[29]. It is a derivation of the ML discriminant
function. specifically when the prior probabilities are con-
sidered to be equal [15]. The Mahalanobis distance is given by

(w—m)'y (@ —my) )

where m; is the mean for class w; and 3~ is the covariance
matrix. Richards stated that “The maximum likelihood classi-
fier can be regarded as a minimum distance measure that is
direction sensitive and modified according to class.” Simple
minimum Euclidean distance classifiers have some limitations
that can be overcome using a Mahalanobis metric. In particular,
this can often address problems caused by poorly scaled or
highly correlated features [30].

Label relaxation is an iterative heuristic technique that ex-
tracts contextual information from an image to reduce the am-
biguity of predetermined labeling. Relaxation labeling utilizes
two sources of information: an initial labeling for p(w;/R,,)
and information embedded in spatial context. Several of the
early PLR algorithms were proposed in the late 1970s and
1980s. Among the most popular are probabilistic labeling re-
laxation [31] and the supervised extraction and classification
of homogeneous objects developed by Landgrebe [32] and
Richards er al. [33].

Following Richards [19]

=1
pl’l’! (Nrn) {S)

is an estimate of the probability that, on the kth iteration,
the label or class of the pixel m is w;. An iterative process
was constructed in order to progressively modify the initial
probability assigned to pixel mn

(“‘_") _ D (wi) - QF (wi)
Nm Zpﬁl {."'*“_J) : Qi\n (""“j)
J

ke
[}FH

(6)
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Fig. |. {a) Second-order neighborhood for pixel m. (b) Third-order neighbor-
hood for pixel m.

where Q% (w;) is called the neighborhood function. Let 8,, be
a neighborhood as in Fig. 1(a) [19]. With the new evidence
obtained from @, we modified this initial probability. which is
known as the posterior probability.

The function Q% (w;) can be defined as

Qﬁ,(w’;) ~ Z meu{wi|wj)pfﬁ(wj) (?)
L

where Py (wiw;) is the probability that pixel m belongs to
class w;, given that n is from class w;.

Context With a Third-Order Statistic PLR3

In this paper. we extend PLR2 to a new label relaxation
approach termed PLR3, in which we consider third-order statis-
tics. Third-order statistics have been shown to be important in
many other fields [22], [34], [35].

The matrix ppn(w;|w;) is constructed considering not just
one neighboring pixel n but two neighbor pixels n and I, for
the actual pixel m; in this case, the conditional matrix will have
the form p,ni(w;|w;, wy). This is a conditional probability of
seeing class w; for pixel m given the following configuration;
Pixel n has class w;, and pixel [ has class wp.

For example, if we consider that the two classes are in a
vertical (V) disposition, as shown in Fig. 1(b), the neighborhood
function will be given by

Qk (wi) =3 pmnt(wilwj, wh)pnt(wjlwn)pf (wn)  (8)

3 h

and the a posteriori probability will be given by the same
expression as (6).

The algorithm described in this section was applied to a
series of synthetic images and a real image. The methodology is
explained in Section IIT, using the example of a synthetic image
created with different directions.

1. METHOD

Two types of synthetic images (204 x 204 pixels) were
used, one with horizontal (H) and V stripes and the other with
diagonal stripes, as shown in Fig. 2. The images had four
bands: the reason for choosing this number was because we also
planned to use real images with four bands. Only two classes
were considered for the experiments in an effort to simulate the
extraction of a feature against a background, such as roads or
other cartographic linear features. The synthetic image classes
were produced with a random generator, and each band showed
normal distributions: N1 [(40, 46, 46, 46), (10, 10, 10, 10)]

{a) | (b)

Fig.2. Synthetic images (a) with Hand V stripes and (b) with diagonal stripes.
4 bands
Structural
elements
W L 2
Mahalanobis Independent 2 bands
classification Component
J’ -1CA
Ll Directional
filter
—>| ¥ ( (__I
P wh) v
4" pfrin.f(m;1a);swﬁ)
k N
Qnr ( (B,)
¢, p ni (w} ‘ mﬁ)

Posterior probability P, (Q)

Improved
classification

Fig. 3. Flowchart of the proposed method.

and N2 [(46, 46, 46, 40), (10, 10, 10, 10)] where the numbers
represent different levels of gray for each band. Although only
two classes were considered for the experiment, the method
presented here would be valid for any number of classes.

Fig. 3 shows a flowchart of the proposed method. Entry of
the algorithm is shown in the upper part. One of the inputs is
the original image, which would be either a real or a synthetic
image, as shown in Fig. 2(a) and (b).

The other input would be the structure to be detected in the
original image. An example of this type of structure can be
seen in Fig. 4. In Fig. 4(a), we look for H and V structures,
and in Fig. 4(b). we look for principal (D1) and secondary (D2)
diagonals.
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(@) (b)

Fig. 4. Structural elements to be detected: (a) shows H and V structural
elements, and (b) shows structural diagonals D1 and D2.

(a (b)

(d)

Fig. 5. (a) and (b) Ground truth. (c) and (d) Mahalanobis classification.

These structural elements are necessary to calculate the prob-
abilities ppp (wilw;) and pgi(wi|w;, wy,) and to determine the
neighborhood function of (8). It also allows the proportions of
the two classes to be determined depending on the directions,
as shown in Fig. 4. For the PLR2 method, a pair of pixels is
taken, as shown in Fig. 1(a), while in the PLR3 method, triples
of pixels are considered, as shown in Fig. 1(b). These triples are
examined only for linear structures in all directions (V, H, and
DI and D2), and so consequently, the method preserves such
linear features in the posiclassification process.

The next step in the procedure is supervised classification of
the images shown in Fig. 2 using training fields. In our case,
as stated in the previous section, a Mahalanobis classification
distance was used in both images, using 10% of the ground-
truth images as a training set [Fig. 5(a) and (b)]. The results of
the classification are shown in Fig. 5(c) and (d).

In order to determine the direction in which the algorithm
should be applied (H or V. or diagonal DI or D2) in the
current pixel, first, an independent component analysis (ICA)
was carried out [36].

It is assumed that the reflectance of a pixel is a combination
of the reflectances of endmember spectra in the area covered
by that pixel; this mixture can be considered as the result
of the linear combinations of these endmembers within the

102

Fig. 6. (a) and (c) show the ICA H-V and DI1-D2. (b) and (d) show the
directional filter applied to the ICA analysis,

pixel [37]. Several authors have investigated the application of
ICA methods to the analysis of remote sensing multispectral
images [38]-[41]. ICA is defined as representing the pixel
spectra by the linear combination of statistically independent
components; since two classes are considered, two components
were calculated for ICA. The features from the two classes
behave to some extent like two ditferent sources. For all cases
of the synthetic and the real images, the first ICA band provided
good differentiation between the features. Furthermore, a direc-
tional filter was used on the first band of the ICA to enhance
identification of the adjacent pixel properties in all directions.
The direction filter consisted of a 3 x 3 pixel window that
studies the whole image, applying a higher weighting in a given
direction (0° and 90° in the H and V and 45° and 315° in the DI
and D2). Fig. 6(a) and (c¢) shows the ICA images that contain
edge information: Fig. 6(b) and (d) shows the directional filter
applied to the ICA in order to enhance the directions.

The information from Fig. 6(b) and (d) is used to decide what
values of pry{wilw;, wn) and pyy(w;jws) should be used for
the H, V, D1, or D2 directions, in each pixel. In the actual pixel.
the direction is obtained by exploring the neighborhood pixels
shown in Fig, 6(b) and (d). This information is also utilized in
calculating pf(wp), which updates the posterior probability in
each iteration k.

The classifications are evaluated using a confusion matrix:
accuracy and kappa coefficient with its p-value and 95% confi-
dence interval.

IV. RESULTS AND DISCUSSION

Fig. 7(a) shows the results of classifying the synthetic image
shown in Fig. 2(a) by Mahalanobis distance, using 10% of
the ground truth, shown in Fig. 5(a), as a training sample.
Fig. 7(b}~{d) shows the postprocessing of the Mahalanobis clas-
sification. For Fig. 7(b), a Majority filter with a 3 x 3 window
was applied. Fig. 7(c) was obtained with a PLR (PLR2), as
explained by Richards and Jia [19], with three iterations, and
in Fig. 7(d), the proposed PLR3 method was applied, also with
three iterations. The key difference between PLR2 and PLR3
is that the former used the statistical distribution of pairs of
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(c

(k) m

Fig. 7. Postprocessing of the (a) Mahalanobis classification with (b) Majority
filter. (c) PLR2. and (d} PLR3 for the image with H and V structures. The details
in (D—(h) show the differences in the postprocessing algorithms, The white lines
in (h). which correspond to PLR3. are better defined than the same lines in if)
(Majority) and (g) (PLR2). Similar results can be seen in the details of (.

TABLE 1
CONFUSION MATRICES FOR MAHALANOBIS, MAIORITY, PLR2, AND
PLR3 FOR H AND V STRUCTURES FOR THE SYNTHETIC IMAGE IX FIG. 7

" V.

#2
N

? N\

N

./\

Fig. 8. Postprocessing of the (a) Mahalanobis classification with (b) Majority
filter. (¢) PLR2, and (d) PLR3 for the image with diagonals D1 and D2. Details
in (e)—(1) show the differences in the postprocessing algorithms. (1) and (j) show
two details of the Majority filter, (z) and (k) represent the results of the PLR2
algorithm. and (h) and (1) show the performance of the proposed algorithm
PLR3.

TABLE 1l
CONEUSION MATRICES FOR MAHALANOBIS. MAJORITY. PLR2. AND
PLR3 FOR D1 AND D2 STRUCTURES FOR SYNTHETIC IMAGE IN FIG. 8

MAHALANOBIS MAJORITY
Black White  Total Black White Total
Black 20573 1588 22161 | Black 22623 136 22779
White 2228 14504 16732 | White 178 15936 16114
Total 22801 16092 38893 | Total 22801 16092 38893

MAHALANOBIS MAJORITY
Black Whire Total Black White Total
Black 1827 4628 6435 | Black 1855 314 2169
White 280 31109 31389 | White 252 35423 35675
Total 2107 35737 37844 | Total 2107 35737 37844

(32936/37844) 87.03%

(33077/38893) 90.19%

(38559/388093) V9.14%

(37278/37844) 98.50%

Kappa coefficient = 0.799.
pvalue<(.001

Kappa coefficient = 0.982,
pvalue<(.001

Kappa coefticient = 0.374,
pvalue<0.001

Kappa coefficient = 0.860
pvalue<0.001

C193% Kappa (0.793. 0.805)

CI 95% Kappa (0080, 0.984)

C195% Kappa (0.360, 0.388)

C195% Kappa ((1.848, 0.872)

“ PLR2 PLR3
Black White Total Black White Total
Black 22291 3 32294 | Black 22363 31 22394
White 510 16089 16599 | White 438 16061 16499
l'otal 22801 16092 38893 | Total 22801 16092 38893

PLR2 PLR3
Black White Total Black White Total
Black 1876 2554 4430 | Black 1881 107 1988
White 231 33183 33414 | White 226 35630 35836
Total 2107 35737 37844 | Total 2107 35737 37844

(38380/38893) 98.68%

(38424/38893) 98.79%

(35039737844 92.64%

(3751 1/37844) 99.12%

Kappa coefficient = 0.973,
pvalue<0.001

Kappa cocfticient = 0.975,
pvalue<0.001

Kappa coefficient = 0,539,
pvalue<(.001

Kappa coefficient = 0.914.
pvalue<0.001

Cl1 95% Kappa (0.971. 0.975)

CI 95% Kappa (0.973, 0.977)

C1 95% Kappa (0.523, 0.555)

C195% Kappa (0.904, 0.924)

pixels, while the latter used triples of pixels. It is observed that
all three methods reduced the noise of the initial Mahalanobis
classification, particularly the Majority filter in Fig. 7(b); how-
ever, PLR2 and PLR3 better delineate the linear entities, as can
be seen in the details hereinafter, in Fig. 7(e)H1). The images
in Fig. 7(e) and (i) are details of the Mahalanobis classification
shown in Fig. 7(a); in Fig. 7(f) and (j), corresponding to the
Majority filter, black pixels invade white lines; in Fig. 7(g)
and (k). corresponding to PLR2, white pixels occupy the black
edges: Fig. 7(h) and (1), corresponding to PLR3, produces the
best results in depicting the white lines.

To complement this visual analysis, we performed a numer-
ical analysis in which the classification was evaluated using a
confusion matrix of the full ground-truth data set [Fig. 5(a) and
(b)]. Table I shows the results of the confusion matrices for
Mahalanobis and the three postclassification methods.

Note that the Majority method provides the best accuracy
(99.14%) and kappa coefficient (0.982), with approximately
300 pixels misclassified; the PLR3 produced the second best
accuracy (98.79% and kappa coefficient 0.9752) with almost
500 pixels incorrectly classified, but better defined linear fea-
tures. Most of the decrease in PLR3 accuracy and kappa is be-
cause, for this case, the method, as well as the Majority method,
does not clean noise; Majority reduced the noise but increased
the misclassified pixels in the edges of linear structures. PLR2
was slightly less accurate (accuracy 98.68% and kappa 0.973)
than the PLR3 and Majority algorithms.

For all methods, the p-value and a 95% confidence interval
have been included. In all cases, the p-value was less than
0.001, indicating that the classifications obtained are signifi-
cant. Although the confidence intervals for PLR2 and PLR3
have no empty intersection, which means that the difference
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(b)

Fig. 9. {a) Aerial image of an area of Madrid with two details. Image (b) shows the first band of ICA with diagonal filters applied.
] ()
Fig. 10.  Postprocessing of the (a) Mahalanobis classification with (b) Majority filter. (¢) PLR2, and (d) PLR3 for the aerial image. Details in (e)~(1) show the

differences in the postprocessing algorithms. (f) and (j) show two details of the Majority filter, (g) and (k) represent the results of the PLR2 algorithm. and (h) and

(1) show the performance of the proposed algorithm.

berween methods is statistically nonsignificant (as can be seen
in Table I), the visual evaluation [Fig. 7(g) compared with
Fig. 7(h) and Fig. 7(k) compared with Fig. 7(1)] shows that the
edges are better represented by PLR3 than by PLR2.

We conducted a similar study for diagonal directions. The
Mahalanobis classification and the three posiclassification
methods for Fig. 2(b) image with some details are shown in
Fig. 8. Following the order of the aforementioned synthetic
image. Fig. 8(a) corresponds to Mahalanobis classification,
Fig. 8(b) corresponds to Majority filter, Fig. 8(c) corresponds
to PLR2, and Fig. 8(d) corresponds to PLR3.

104

The worst performance of the three postclassification tech-
niques in this case was the PLR2 method, which produced
a lot of noise and poor determination of the linear features
[Fig. 8(c)]. This is due to the shape of the neighborhood
considered for PLR2, as this method studies the images in
only H and V directions. The number of noisy pixels was
similar in the Majority and PLR3 results; however. as with
the previous synthetic image, PLR3 defined the linear features
more accurately, as seen by comparing Fig. 8(b) and (d). Two
details [Fig. 8(e)-(h) and (i)-(1)] have been provided to better
see this idea. It can be observed that Fig. 8(h) and (1) are the
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TABLE I
CONFUSION MATRICES FOR MAHALANOBIS, MAJORITY, PLR2, AND
PLR3 FOR DI AND D2 STRUCTURES FOR THE AERIAL IMAGE IN FIG. 9

MAHALANOBIS MAJORITY
Black White Total Black White Total
Black 340 280 64 Black 728 236 964
White 67 1612 1679 White 28 1656 1684
Total 756 1892 2648 Total 756 1892 2648

(2301/2648) 86.8958%

{2384/2648) 90.0302%

Kappa coefficient = 0,704,
pyalue<(.001

Kappa coefficient = 0.774,
pvalue<(.001

C1 95% Kappa (0.675, 0.733)

C195% Kappa (0,749, 0,799)

PLR2 PLR3
Black White Total Black White Total
Black 703 126 829 Black 726 141 867
White 53 1766 1819 White 30 1751 1781
Total 756 1802 2648 Total 756 1892 2648

(2469/2648) 93.2402%

(2477/2648) 93.5423%

Kappa coefficient = 0.839,
pvalue<0.001

Kappa coefficient = (.848,
pvalue<0.001

Cl 95% Kappa (0.813, 0.863)

C1 95% Kappa (0.826, 0.870)

Fig. 12. Panels (a) and (b) show the training and evaluation sets, respectively.
for Fig. 11 satellite image. Panel (¢) shows the first band of ICA analysis with
diagonal filters applied.

TABLE IV
CONFUSION MATRICES FOR MAHALANOBIS. MAJORITY, PLR2, AND
PLR3 FOR D1 AND D2 STRUCTURES FOR IKONOS IMAGE IN FiG. 11

MAHALANOBIS MAJORITY
Black White Total Black White Total
Black 22900 116 23016 | Black 23017 101 23118
White 1412 25200 26621 | White 1295 25224 26519
Total 24312 25325 49637 | Total 24312 25325 49637

@

Fig. 11. lmage (a) is a satellite image (lkonos) of the Alcald de Henares
university campus (Madrid) with three defails 1, 2, and 3. The bands for vi-
sualization with red., green. and blue are infrared, blue, and green, respectively.

best postprocessing classifications among the three methods,
removing noise and preserving linear features, as confirmed by
numerical analysis in Table II.

In this case, PLR3 provides the best accuracy (99.12%) and
kappa (0.9140), while Majority provides an accuracy of 98.50%
with a kappa of 0.860. As in Table I, PLR3 produced more noise
in homogeneous regions than Majority but worked better at the
edges. PLR3 and Majority present significant differences in the
kappa coefficient because their confidence interval at the 95%
level had an empty intersection.

Fig. 9 shows an aerial image (400 x 400 pixels) of Alcald
de Henares, Madrid, Spain, taken in summer 2010. This image
was taken with a Leica ADS40 SH52 sensor, with a spa-
tial resolution of 0.5 m and four spectral bands (red, green.
blue, and near infrared). The two images on the right are
the selected details. In this case. the diagonal neighborhood

(48109/49637) 96.9217%

(48241/49037) 97.1876%

Kappa coefficient = 0.938,
pvalue<0.001

Kappa coefficient = 0.944,
pvaluc=0.001

CI 93% Kappa (0.934, 0.942)

C195% Kappa (0.942, 0.946)

PLR2 PLR3
Black White Total Black White Total
Black 22904 91 22995 | Black 24010 534 243544
White 1408 25234 26642 | White 302 24791 25093
Total 24312 25325 49637 | Towal 24312 25325 49637

(48138/49637) 96.9801%

(48801/49637) 98.3158%

Kappa coefficient = 0.940,
pvalue<0.001

Kappa coefficient = 0.970,
pyalue<0.001

C1 95% Kappa (0.936, 0.944)

C195% Kappa (0.968, 0.972)

system was used because of the diagonal appearance of the
man-made and natural features of the image. The result of
applying the directional filter to the first component of the ICA
is shown in Fig. 9(b), which shows how the linear structures are
enhanced.

The classification and postprocessing are shown in Fig. 10; as
with the synthetic images, the first row shows Mahalanobis (a),
Majority (b), PLR2 (c). and PLR3 (d) applied to Fig. 9(a). It can
be seen that the three postprocessing methods removed most of
the noise from the Mahalanobis classification, but boundaries
are represented very differently between the studied methods; at
this level, it can also be seen that PLR3 best conserves the linear
features. To appreciate this characteristic, we show the two
details of Fig. 9(a): Number 1 shows a region with buildings
in a diagonal disposition, and number 2 shows the diagonal
intersection of two roads.
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Fig. 13.

Postprocessing of (a) the Mahalanobis classification with (b) Majority flter, (c) PLR2, and (d) PLR3 of the real image in Fig. 12. The other images

show the results of the tested algorithms in three scenes of the image. First column [(e), (i), and (m)] shows the Mahalanobis classification. second column shows
the Majority filter, third column shows the PLR2. and fourth column shows the proposed algorithm PLR3.

In the first detail, note how in Fig. 10(h), corresponding to
PLR3, the large building at the center right is better delineated
than in Fig. 10(e)—(g), corresponding to Mahalanobis, Majority,
and PLR2, respectively. In the second detail, note how in
Fig. 10(1), corresponding to PLR3, the median road is detected
more clearly than in Fig. 10(i)—(k).

Apart from the visual evaluation, Table III shows the con-
fusion matrices and p-values, which are superior for the PLR3
method although, for this case, the comparison between PLR3
and PLR2 is significant to the 95% level.
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Fig. 11 shows another real image, which is this time a satel-
lite image from the Tkonos sensor; this sensor takes images in
four spectral bands with different spatial resolutions (1 m in the
panchromatic mode and 4 m in the multispectral mode) from an
average altitude of 681 km (revisit time is approximately three
days). The image used here is a pansharpened image [42] of | m
resolution and a size of 900 x 700 m, depicting part of Alcala
university campus, Madrid.

A training set was selected from Fig. 11(a), as shown in
Fig. 12(a). In remote sensing classification with only two
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classes. the most commonly chosen classes are man-made and
natural areas. Training areas are shown in red for man-made
areas and bright green for natural objects, which are mostly
vegetation with some areas of bare soil. The training areas in
Fig. 12(a) were extended to produce the evaluation setl seen
in Fig. 12(b), so different pixels are used for evaluation and
training. Fig. 12(c) shows the image produced by applying the
directional filter to the first ICA component from Fig. 11(a).
The results of the classification are presented in Table IV.
All three postprocessing method have an accuracy and kappa
coefficient superior to the initial classification by Mahalanobis
distance. with the PLR3 method producing the best results.
The high confidence interval and kappa value demonstrate that
the PRL3 method is significantly superior to the Majority and
PLR2 methods.

Mahalanobis classification of the image in Fig. 11(a) is
shown in Fig. 13(a), demonstrating that most man-made areas
were classified correctly. Fig. 13(b)—(d) shows the postclassi-
fication of Fig. 13(a) with Majority, PLR2, and PLR3, respec-
tively. Note that the tennis courts and athletics track in the upper
right part of Fig. 11(a) have synthetic surfaces, so they have
been correctly assigned to the man-made class.

For a visual discussion of the results, three details have
been selected from the classified satellite image to evaluate
the goodness of the algorithm. The first detail [Fig. 11(a)-1]
shows the athletics track. In Fig. 13(e), the results of the
Mahalanobis classifications are shown; the Majority postpro-
cessed image is shown in Fig. 13(f), showing some im-
provement such as reduced noise. Furthermore, Fig. 13(g)—(h)
corresponds to PLR2 and PLR3, respectively, and shows fur-
ther improvement over Majority, with reduced noise and more
clearly delineated track.

The second detail [Fig. 11(a)-2] corresponds to a natural
area, such as a lawn; the Mahalanobis classification of this
element is shown in Fig. 13(i); the postclassification images
with Majority, PLR2, and PLR3 are shown in Fig. 13(j}—(1),
respectively. All three improve on the Mahalanobis classifica-
tion, but the proposed PLR3 method is superior to the other
methods in preserving linear structures. Finally, the third detail
[Fig. 11(a)-3] corresponds to a major and a minor road; the
Mahalanobis classification is shown in Fig. 13(m). The Major-
ity [Fig. 13(n)] and PLR2 [Fig. 13(0)] blindly clean the noise,
removing the minor road, while PLR3 preserved part of the
diagonal linear structures, keeping and extending some of the
lines delineating the minor road [Fig. [3(p)].

V. CONCLUSION

This paper has examined the use of a postclassification
method to improve the supervised classification of linear struc-
tures. We compared the behavior of three methods: two pre-
existing methods, Majority and PLR2, and a proposed PLR3
method, which extends PLR2 by studying groups of three pixels
in the current pixel neighborhood rather than pairs.

In general contextual postclassification, it is important to
remove the noise of an initial classification. Existing methods
are useful in homogeneous regions, but when boundaries need
to be enhanced, many problems occur with misclassified pixels
at the edges of the classification regions. The goal of the
proposed PLR3 method, in addition to removing classification

noise, is to correctly differentiate linear boundaries between
classes.

The performance of the three methods was tested in four
images: two synthetic images and two real images (an aerial and
a satellite image). The use of synthetic images with full ground
truth facilitated numerical analysis of the accuracy and kappa
coefficient of the different methods. The use of real images was
important to determine the potential of the proposed method for
real situations.

The results showed that, in all cases, posiclassification im-
proved the accuracy of the initial classification by reducing
image noise. The proposed PLR3 method defines linear struc-
tures better than the Majority and PLR2 methods, due to the
inclusion of third-order statistics (in the sense of using triplets
of neighborhood pixels) within the probabilistic likelihood
calculation.

The proposed PLR3 method was used to extract linear fea-
tures such as roads, sports tracks, buildings, etc., from remotely
sensed aerial and satellite images; the results showed that the
proposed method was a good candidate for a postclassifier.
There is no single best postprocessing technique for all cases
because results depend on the application at hand. Therefore,
the method presented here is useful when it is important to
retain lines or edges.
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CHAPTER 5

Conclusions and future work

Someday we’ll look back on this

and it will all seem funny.

Bruce Springsteen

As can be seen in former chapters, for every single research carried out in this
thesis there have been summarized its particular reached conclusions. Besides,
in order to emphasize the main concluded novelties resolutions, in the current
5" Chapter entitled “Conclusions and future work” both general resolutions
learned during the implementation of the whole thesis and those that have been
achieved in the development of every piece of particular research are collected

and synthesized.

- CI1: Segmentation, grouping and data structure pre-processing methods
are useful to facilitate and speed up the subsequent/following procedures

for the treatment and analysis of remote sensing data
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Geospatial data provided by remote sensing sensors, either in raster format or
point cloud structure, are very dense, and processing can be costly in terms of
computing time and computing. During the research presented in this thesis, it
has been proven that optimizing the analysis and processing operations of
geospatial data, requires proper structure to avoid unnecessary waiting time and
computational efforts. The work presented in this thesis has discarded the
application of algorithms at pixel/point level in big data due to the
computational complexity that this entails. Aiming to optimize the
methodologies to be applied to remotely sensed data it has been observed the
convenience of wusing algorithms that group elements with common
characteristics, moving from an individual level, either pixel or point, to a

region or super pixel level.

In the pre-processing step of the method presented in “Semi-automatic detection
of swimming pools from aerial high-resolution images and LIDAR data” [81], a
region-growing segmentation of the aerial image is carried out, which allows
working with groups of pixels with similar properties instead of working with
isolated elements. An alternative to segmentation for those works in which 3D
point clouds are involved is the creation of regions of interest, deleting those
parts of the cloud that are not relevant to the current work. In the paper
entitled “An approach to detect and delineate street curbs from MLS 3D point
cloud data,” to ease and speed up the following procedures, the point cloud was
projected onto 2D surfaces, similar to raster images. Another possibility to
improve the management of the point cloud is the one presented in [73], in
which the point cloud is organized in a pillar structure, which is more easily

usable than the raw data.

- C2: 3D ALS and MLS point clouds serve to complement the 2D
information contained in aerial and satellite imagery, both in terms of z-

coordinate and spatial resolution
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Aerial and satellite images provide high spatial and spectral resolution
information, useful in disciplines including territorial analysis and urban policy
making. Raster images, however, have important limitations due to their
acquisition characteristics: aerial and satellite images register planimetric
information but do not directly provide altimetric information. The lack of 2-
coordinate information may prevent proper identification of certain land covers

such as building and trees.

3D information provided by airborne laser scanner sensors complements multi-
and hyperspectral aerial raster imagery information. This thesis has proven the
utility of merging ALS data with multispectral imagery to update ground cover
databases In the article entitled "Semi-automatic detection of swimming pools
from high-resolution aerial images and LIDAR data" [81] the inclusion of
LIDAR data in the land cover recognition procedure allowed the generation of a
normalized digital surface model (nDSM), which facilitated the discrimination of

natural vegetation cover and human constructions.

Furthermore, terrestrial point clouds, both TLS and MLS, allow work to be
carried out in greater detail, which is hardly achievable from aerial geospatial
information. TLS sensors also have the advantage that point cloud
measurement is not affected by weather or lighting conditions. The papers on
street curbs and pole-like objects both noted/demonstrated the ability of MLS
sensors to effectively extract precise details of street furniture, trees, and

roadsides.

- C3: Desirability of the availability of a dataset and ground truth validation
set to quantify the efficiency and robustness of novel and existing

methodologies and make reliable comparisons in a common framework

One of the main goals of remote sensing research is the development of robust
algorithms capable of obtaining precise and accurate results in all conditions.
During the development of the research presented in this thesis, it has been

noted the difficulty of generating methodologies to provide acceptable accuracy
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rates in any work area regardless of the sensor’s characteristics. In the current
literature, there are several methodologies and approaches for extracting and
classifying land covers and urban furniture. Some authors have made important
efforts to check the validity and robustness of their methods and to test their
effectiveness in data measured by diverse sensors and representing a wide
variety of possible coverage and urban settings. However, the fact of not having
a common dataset where the various existing algorithms can be applied and
validated makes the certification and comparison of different methodologies
difficult. To validate their methods, authors must make their own ground truth,
by visually exploring data and making field visits when the photo interpretation
is uncertain. A common dataset and ground truth would save authors trying to

validate their methods a great deal of time.

- C4. It is necessary to develop a method for detecting and removing shadows
in aerial and satellite images before any classification procedure in order to

avoid land covers misallocation.

The shadows cast by high elements such as buildings or trees modify the
spectral response of land covers in multispectral images and hinder their proper
extraction from geospatial data. To avoid this effect, geospatial data acquisition
from aerial platforms is commonly carried out during the summer and in the
middle hours of the day, when the sun is close to its zenith. However, despite
this effort to minimize the presence of shadows on the scene, their existence on
aerial and satellite images is inevitable and cause subsequent errors in
classification procedures. Thus, to minimize and remove these errors, every
method for extracting and classifying land covers should take the effect of
shadows into account and propose a solution to eliminate these procedural
errors. The article "Semi-automatic detection of swimming pools from aerial
high-resolution images and LIDAR data" [81] used the method implemented by
our research group (Alejandro Martinez de Agirre and Jose Antonio Malpica) in
the paper entitled "Detection of shadows in high-resolution images using LIDAR

technology" [82]. This method can estimate the existing shadows in an aerial
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image from the sun’s position and the aerial platform at the time of taking the
image and enables the classification procedure to reclassify those regions

mistakenly classified as shadowed areas.

- 5. Fuzzy logic is a real alternative, in terms of accuracy and robustness, to
supervised and unsupervised classification algorithms in the extraction and

classification of ground covers

Traditionally, image classification procedures have been carried out through
supervised and unsupervised classification algorithms. The main drawback of
these methods is the need of additional a priori information about the input
data and characteristics of the considered classes. This thesis analyzed the
performance of fuzzy logic in image classifications procedures. Specifically, the
Dempster-Shafer evidence theory has been studied. Just like a traditional
classifier, fuzzy logic is not an automatic procedure but a semi-automatic one
because each decision index must be assigned masses of belonging to each of the
considered categories depending on its value. Results provided by fuzzy logic
have been compared with the ones obtained using Mahalanobis distance and
SVM, one of the most precise supervised classification algorithms. Dempster-
Shafer achieved better results than the Mahalanobis classifier and overall
accuracy rates comparable to SVM, with a 99.86% in Dempster-Shafer and a
99.87% in SVM. Thus, it can be concluded that fuzzy logic is a real alternative

to supervised and unsupervised algorithms in image classification procedures.

- C6. ALS intensity pulse return as an efficient descriptor of certain land

covers

Multi- and hyperspectral images provide information on different wavelengths of
the electromagnetic spectrum, which is wuseful information to generate
descriptors for classification processes. Regarding laser scanner sensors, although
they are not capable of recording spectral information, they can record the
return intensity of the emitted laser pulses. This information is useful for

extracting certain entities that have a characteristic behavior in this variable,
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such as bodies of water, roads, or road signs. Laser return intensity values
depend on the laser scanner’s calibration and the way in which the measuring
device encodes the results. Thus, despite its utility, it is difficult to automatize
those procedures involving intensity return. In "Semi-automatic detection of
swimming pools from high-resolution aerial images and LIDAR data" [81],
LIDAR intensity has been used to discriminate paved surfaces, due to the low-
intensity signal in these surfaces. It also noted the ability of LIDAR intensity
returns to detect bodies of water, due to the short LIDAR reflectivity in those

coverages.

- C7. The importance of the neighborhood and geometric variables as
descriptors in classification and entity extraction procedures in 3D point

clouds.

Traditionally, image classification algorithms use the spectral information
contained in the different bands of multispectral images as category descriptors,
Sometimes, context descriptors such as texture or roughness are used as
descriptors. The computing of these variables is based on the study of every
pixel of the image and its neighborhoods. Because laser scanner sensors just
record geometric data without spectral information, analysts and researchers
must develop decision indices different than those commonly used in
multispectral imagery. Generally, these indices are based on geometric variables
calculated for each point from all the points contained in a certain neighborhood
(a neighborhood is a sphere centered on the studied point). It is important to
establish the appropriate size of a neighborhood. A small neighborhood may not
consider enough points necessary to calculate the geometric variables, and large
vicinity can generate unaffordable processing times. A previous study is suitable
to decide the proper size of the neighborhood based on the density of the cloud
to achieve a useful extraction. In the work presented in “Automatic Detection
and Classification of Pole-Like Objects in Urban Point Cloud Data Using an
Anomaly Detection Algorithm” [73], an index has been developed that allows

the extraction of horizontal and vertical surfaces, as well as the reconstruction
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of the trajectory followed by the MLS. This index is calculated from two
geometric features of the cloud, the roughness and the normal vector. This work
included an analysis of the behavior of the developed geometric index with
different neighborhood sizes. Thus, it is possible to determine the optimal size

that allows a correct extraction with an acceptable processing time.

- 8. It is important to properly plan the MLS data measurement in order
to avoid unwanted occlusions in the cloud during the registration process

and the need for development methods to estimate hidden items.

MLS sensors are capable of recording the (z, y, z) coordinates of millions of
points, thereby creating a 3D model. However, just as in aerial images with
wooded areas that hinder the vision of the ground, in point clouds some regions
are not represented in the 3D point cloud. This effect is due to occlusions
produced by obstacles, both stationary and moving (cars, pedestrians, trees, or
containers), which are interposed between the sensor and the reality being
measured. These occlusions mean that some target elements could appear
partially or wholly hidden in the cloud, which makes their proper detection
impossible. It is important to take this issue into account at the time of
planning fieldwork and take actions to minimize the occluded areas in the cloud.
Some measures to consider are performing more than one scanning measurement
in the studied area, installing several laser scanner sensors in the vehicle to
record information from different perspectives, or carrying out the cloud’s
registration when car traffic and pedestrians are sparse. However, despite proper
planning of data collection, the presence of certain occlusions in the point cloud
is inevitable, such as those caused by fixed elements in the street. Therefore, it
is desirable to develop extraction and classification methods smart enough to
estimate what can happen in these hidden areas and what elements can exist in
reality even without being present in the cloud. The work "An approach to
detect and delineate street curbs from MLS 3D point cloud data" has developed

a method to estimate the location of those existing curbs on the street that are
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hidden by fixed and moving obstacles, such as containers or vehicles parked in

the driveway.

- C9. Post-classification procedures are mecessary to remove noise and

improve the results of classification methods

In addition to false positive and false negative errors, image classification
algorithms generally produce noise that reduces the quality of the final work.
This noise is the known as salt-and-pepper effect and is shown as isolated
misclassified pixels in homogeneous regions. It is important to implement post-
classification techniques to improve classification quality and eliminate those
errors generated in the procedure as much as possible. Generally, post-
classification procedures do not consider spectral properties but contextual
information. The label and the context information (category of neighboring
elements) for every picture element (pixel or regions) are studied. The algorithm
decides, depending on context labeling, if the studied element preserves its
category or if a new label is assigned to the studied entity. The work presented
in the paper "A spatial contextual post-classification method for preserving
linear objects in multispectral imagery" [83] developed a method to eliminate
the noise generated in the classification process. Additionally, this method can

define linear structures that have been lost during the classification process.

- C10. Working with synthetic images in the algorithm design phase allows

to refine the methodology prior to its application in real images/cases

Aerial and satellite images represent large areas of land where there are
elements of diverse nature and heterogeneous characteristics. It is necessary to
create an accurate ground truth to evaluate the performance of image processing
and analysis algorithms in this type of geospatial data. Generating a ground
truth is not a trivial task and requires high economic and temporal effort. The
quality of a generated ground truth depends on the quality of the geospatial
reference data input and the expertise of the photo interpreter. In many cases,

ground truth generation requires field visits to complete the geospatial

116



Chapter 5 — Conclusiones and future works

information, further increasing the economic and temporal cost of the procedure.
The use of synthetic images whose size, distribution, and number of bands is
perfectly controlled by the user is useful to analyze the theoretical behavior and
post-classification sorting algorithms in user-controlled situations. In the work
"A spatial contextual post-classification method for preserving linear objects in
multispectral imagery," a series of synthetic images have been created to study
and evaluate, under controlled conditions, the theoretical behavior of a

developed post-classification algorithm.

- C11. Anomaly detection algorithms, traditionally used in hyperspectral
imagery, can be successfully used in the detection of elements of interest

in 3D point clouds.

Supervised classification processes carry out what is known as target detection.
From input information used to train the classification algorithm, these
algorithms perform a classification of those elements with certain distinct
spectral and spatial characteristics of other considered categories. The need for

training hinders the automation of such classifications.

Another way of extracting and classifying cartographic entities is known as
anomaly detection. Sometimes the statistical behavior of some classes is
different from the average behavior of all other categories of the set, placing the
first classes in the tails of the statistical descriptors. Anomaly detection consists
of finding those elements located in the distribution tails whose behavior differs
from the rest. This form of extraction does not need initial training information,
which is an advantage when automating classification processes. Generally,
anomaly detection algorithms are used in hyperspectral imaging, but the article
"Automatic detection and classification of pole-like objects in urban point cloud
data use an anomaly detection algorithm" [73] has proven the usefulness of the
RX anomaly detection algorithm to detect vertical street furniture in 3D point

clouds.
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Future Work: the following paragraphs briefly discuss the open lines of study

remaining after the completion of this thesis work, and through which future

research will be directed,

- FWI1. Optimization of developed methodologies in order to reduce waiting
times, opening the door for the land covers extraction in large scale

production processes.

One of the weaknesses of processing and analysis methodologies of geospatial
information are the long waiting times that require these processes, mainly due
to the high volume of digital memory occupied by remotely sensed data. Future
research will attempt to reduce the waiting times, optimizing the methodologies
proposed for the extraction of urban elements for its possible use in large scale

production processes and generating real-time results.

- FW2. Study the possibility of including hyperspectral images and
multitemporal information both in extraction and classification developed

methods and their influence on the final accuracy.

The ability to add geospatial information measured at different times in order
to perform multi-temporal analysis will be studied. Thus, it would be possible to
detect those land covers that have experienced changes over time. Similarly, the
inclusion of hyperspectral imagery will be deemed. These images provide
continuous information in the electromagnetic spectrum, which could be useful

in detecting and classifying a larger number of urban entities and land covers.

- FW3. Future research will attempt to merge multispectral data with MLS
and TLS point clouds and consider the use of 3D point clouds obtained by

photogrammetric methods.

Aerial and satellite multi- and hyperspectral images contain spectral and
contextual information that can perform classification procedures by using
descriptor indexes such as NDVI. In point clouds recorded by a terrestrial laser
scanner, both MLS and TLS, spectral information is not available. Geometric

properties of the cloud, such as roughness or curvature, are calculated to carry
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out processes of classification and entity extraction. It would be interesting to
combine the 3D point cloud with the multispectral image information to obtain
(z, y, 2) coordinates for each point and information at different wavelengths of
the electromagnetic spectrum. Some laser sensors take images at the same
moment when the laser scanning is performed, allowing an RGB value to be
assigned to each point of the cloud. Having information in other spectrum
wavelengths, such as the middle and near-infrared, would facilitate the detection

of land covers and urban furniture from point clouds.

In tecent times, the use of point clouds obtained by photogrammetric methods
(from several images taken from different points of view) has been imposed to
those recorded by laser scanner sensors because photogrammetric point clouds
provide 3D information with spatial accuracy similar to MLS and TLS clouds,
but with a more economically efficient acquisition process. In addition,
photogrammetric clouds include spectral information (usually in the RGB
bands, which are those in which photogrammetric cameras take in information).
In future works, the developed methodologies will be adapted to
photogrammetric point clouds and new methodologies for these types of point
clouds will be developed, whose multispectral information could be useful in

pattern recognition tasks.

- FWJ. Inclusion of other descriptors in extraction and classification

procedures, as the LIDAR intensity for traffic signs.

In the course of the work presented in this thesis, it has been observed that the
behavior of the LIDAR pulse intensity return is sensitive to the properties of
the material on which the laser is reflected. LIDAR intensity has been used in
the work titled "Semi-automatic detection of swimming pools from high-
resolution aerial images and LIDAR data" [81] for extracting asphalt floors
from ALS data, but it has been noted that this property has greater potential
for detecting other features from 3D MLS point clouds, such as horizontal and

vertical traffic signs. In future research, the LIDAR intensity will be included

119



Chapter 5 — Conclusiones and future works

as a descriptor of other urban features not considered in the current work. A
small preview of this planned future work has been implemented and recently
presented in the paper entitled “Extraccién de senalizacién horizontal en

entornos urbanos a partir de nubes de puntos tridimensionales” [75].

- FW5. Feasibility study of the uses and capacities of LIDAR full

waveform.

In recent research works [84, 85] LIDAR full waveform is beginning to be used
instead of the discrete LIDAR that had been used so far. This brand new
LIDAR, capable of detecting 256 returns for each emitted pulse, captures
vertical information substantially continuously along the pulse. The main
drawback is that the size of the point cloud exponentially increases, which
difficult the treatment of these data. But as positive part, they can provide
useful information for extracting buildings or the study of plant mass that were
not available until now. The feasibility of its use will be studied and, if it is
positive, its use will be considered for inclusion in extraction and classification

procedures.

120



Bibliography

Dicebat Bernardus Carnotensis

nos esse quasi nanos, gigantium humeris incidentes,

ut possimus plura eis et remotiora videre,

non utique proprii visus acumine, aut eminentia corporis,

sed quia in altum subvenimur et extollimur magnitudine gigantea

Somos como enanos sobre los hombros de gigantes
podemos ver mds, y mds lejos que ellos,
no por la agudeza de nuestra vista, ni por la altura de nuestro cuerpo,

sino porque somos levantados por su gran altura.

Bernardo de Chartres

Research papers and scientific books detailed in this section are referred to those
citations included in this thesis work, with the exception of cites included in each

paper.

1] S. C. Holland and D. A. Plane, "Methods of mapping migration flow patterns,"
Southeastern Geographer, vol. 41, pp. 89-104, 2001.
2] C. R. Sluter, C. B. M. Cruz, and P. M. L. de Menezes, Cartography-Maps

Connecting the World: Springer, 2015.



8]

(7l

[8]

[9]

[10]

[11]

[14]

15]

[17]

(18]

S. Holmberg, "Geoinformatics for uwrban and regional planning," Environment
and Planning B, vol. 21, pp. 5-5, 1994,

F. Joly, La cartographie vol. 34: Presses universitaires de France, 1976.

J. P. Snyder, Map projections—-A working manual vol. 1395: US Government
Printing Office, 1987,

T. M. Lillesand and R. W. Kiefer, "Remote Sensing and Image Interpretation.
John Willey & Sons," Ine¢, United States of America, 1994.

R. A. Schowengerdt, Remote sensing: models and methods for image processing:
Academic press, 2006.

J. R. Jensen, Remote sensing of the environment: An earth resource perspective:
Pearson Education India, 2009.

S. L. Ustin, "Remote sensing of environment: State of the science and new
directions," Remote Sensing of Natural Resources Management and
Environmental Monitoring, 2004,

D. S. Wilkie and J. T. Finn, Remote sensing imagery for natural resources
monitoring: a guide for first-time users: Columbia University Press, 1996.

J. R. Jensen and K. Lulla, "Introductory digital image processing: a remote
sensing perspective," 1987.

R. C. Gonzalez and R. E. Woods, "Digital image processing," ed: Prentice Hall
New Jersey, 2002.

P. Teillet, K. Staenz, and D. William, "Effects of spectral, spatial, and
radiometric characteristics on remote sensing vegetation indices of forested
regions," Remote sensing of Environment, vol, 61, pp. 139-149, 1997,

M. Labrador Garcia, J. Evora Brondo, and M. Arbelo Pérez, "Satélites de
Teledeteccion para la gestién del territorio," La Laguna, Spain: Consejeria de
Agricultura, Ganaderia, Pesca y Aguas del Gobierno de Canarias, 2012.

J. Gao, "A comparative study on spatial and spectral resolutions of satellite
data in mapping mangrove forests," International Journal of Remote Sensing,
vol. 20, pp. 2823-2833, 1999.

Y. Du, P. M. Teillet, and J. Cihlar, "Radiometric normalization of
multitemporal high-resolution satellite images with quality control for land
cover change detection," Remote sensing of Environment, vol. 82, pp. 123-134,
2002,

L. G. Brown, "A survey of image registration techniques," ACM computing
surveys (CSUR), vol, 24, pp. 325-376, 1992.

G. V. Vosselman and H.-G. Maas, Airborne and terrestrial laser scanning
Whittles, 2010.



19]

20

J. Shan and C. K. Toth, Topographic laser ranging and scanning: principles and
processing. CRC press, 2008.

N. Haala and C. Brenner, "Extraction of buildings and trees in urban
environments." ISPRS Journal of Photogrammetry and Remote Sensing, vol. 54,
pp. 130-137, 1999.

A.-H. Granholm, H. Olsson, M. Nilsson, A. Allard, and J. Holmgren, "The
potential of digital surface models based on aerial images for automated
vegetation mapping," International Journal of Remote Sensing, vol. 36, pp.
1855-1870, 2015.

L. Waser, E. Baltsavias, K. Ecker, H. Eisenbeiss, E. Feldmeyer-Christe, C.
Ginzler, M. Kiichler, and L. Zhang, "Assessing changes of forest area and shrub
encroachment in a mire ecosystem using digital surface models and CIR aerial
images," Remote sensing of Environment, vol. 112, pp. 1956-1968, 2008.

Z. Li, C. Zhu, and C. Gold, Digital terrain modeling: principles and
methodology: CRC press, 2004.

L. Gongalves-Seco, D. Miranda, R. Crecente, and J. Farto, "Digital terrain
model generation using airborne LIDAR in a forested area Galicia, Spain," in
Proceedings of 7th International symposium on spatial accuracy assessment in
natural resources and environmental sciences, 2006, pp. 169-180.

C. Briese and N. Pfeifer, "Airborne laser scanning and derivation of digital
terrain models," in Fifth Conference on Optical, 2001.

E. Nasset, "Vertical Height Errors in Digital Terrain Models Derived from
Airborne Laser Scanner Data in a Boreal-Alpine Ecotone in Norway," Remote
Sensing, vol. T, pp. 4702-4725, 2015.

J.-S. Bailly, G. Sofia, N. Chehata, P. Tarolli, and F. Levavasseur, "Farmland
terrace slope detection from Pleiades digital elevation models," in EGU General
Assembly Conference Abstracts, 2015, p. 10021.

S. P. Garcia and M. M. Rodriguez, "A geospatial indicator for assessing urban
panoramic views," Computers, Environment and Urban Systems, vol. 49, pp. 42-
53, 2015.

S. Zazo, J.-L. Molina, and P. Rodriguez-Gonzélvez, "Analysis of flood modeling
through innovative geomatic methods," Journal of Hydrology, vol. 524, pp. 522-
537, 2015,

A. Giinay, H. Arefi, and M. Hahn, "True Orthophoto production using Lidar
data," in Joint Workshop" Visualization and Exploration of Geospatial Data”,
International Archives of Photogrammetry, Remote Sensing and Spatial

Information Sciences, 2007, p. 4.

123



[31]

35)

[36]

[37]

[38]

[39]

[40]

[41]

A. Georgopoulos, M. Tsakiri, C. Ioannidis, and A. Kakli, "Large scale
orthophotography using DTM from terrestrial laser scanning," The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 35, pp. 467-472, 2004,

D. Morgan and E. Falkner, Aerial mapping: methods and applications. CRC
Press, 2001.

W. Schickier and A. Thorpe, "Operational procedure for automatic true
orthophoto generation," International Archives of Photogrammetry and Remote
Sensing, vol. 32, pp. 527-532, 1998.

F. Ambhar, J. Jansa, and C. Ries, "The generation of true orthophotos using a
3D building model in conjunction with a conventional DTM.)" International
Archives of Photogrammetry and Remote Sensing, vol. 32, pp. 16-22, 1998,

C. Balletti, F. Guerra, A. Lingua, and F. Rinaudo, "True digital orthophoto of
the San Marco Basilica in Venice," International archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 34, pp. 43-48, 2003.

A. Arozarena, G. Villa, and N. Valcdrcel, "The National Aerial Ortophoto
Program in Spain (PNOA)," in International Cartographic Conference. La
Corunia, Spain, 2005,

V. Maliene, V. Grigonis, V. Palevi¢ius, and S. Griffiths, "Geographic
information system: Old principles with new capabilities," Urban Design
International, vol. 16, pp. 1-6, 2011.

O. Huisman and R. de By, "Principles of geographic information systems," ITC
Educational Textbook Series, vol. 1, 2009.

F. J. Pierce and D. Clay, GIS applications in agriculture: CRC Press, 2007.

G. C. Sabou, "GIS Applications for an Effective Heritage Tourism Management
in Romania," International Journal of Economic Practices and Theories, vol. 5,
pp. 136-141, 2015.

B. Das and D. Kumar, "Recent Trends in GIS Applications," Available at SSRN
2609707, 2015.

F. Tanser and D. Le Sueur, "The application of geographical information
systems to important public health problems in Africa," International Journal of
Health Geographics, vol. 1, p. 9, 2015.

S. Madden, "From databases to big data," IEEE Internet Computing, pp. 4-6,
2012.

Y. Ma, H Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya, and W. Jie,
"Remote sensing big data computing: Challenges and opportunities," Future

Generation Computer Systems, vol. 51, pp. 47-60, 2015.



46

[47]
[48]

53]

[56]

[57]

[58]

50]

[60]

[61]

M. Gianinetto and M. Scaioni, "Automated geometric correction of high-
resolution pushbroom satellite data," Photogrammetric Engineering & Remote
Sensing, vol. T4, pp. 107-116, 2008.

D. V. Fedorov, L. M. Fonseca, C. Kenney, and B. S. Manjunath, "Automatic
registration and mosaicking system for remotely sensed imagery,” in
International Symposium on Remote Sensing, 2003, pp. 444-451.

T. M. Mitchell, "Machine learning. WCB," ed: McGraw-Hill Boston, MA:, 1997,

E. Mjolsness and D. DeCoste, "Machine learning for science: state of the art and
future prospects," Science, vol. 293, pp. 2051-2055, 2001.

J. A. Richards and X. Jia, Remote sensing digital image analysis vol. 3:
Springer, 1999.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification: John Wiley &
Sons, 2012.

F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing
images with support vector machines," IEEE Transactions on Geoscience and
Remote Sensing vol. 42, pp. 1778-1790, 2004.

P. M. Atkinson and A. Tatnall, "Introduction neural networks in remote
sensing," International Journal of Remote Sensing, vol. 18, pp. 699-709, 1997.

G. H. Ball and D. J. Hall, "ISODATA, a novel method of data analysis and
pattern classification," DTIC Document1965.

J. MacQueen, "Some methods for classification and analysis of multivariate
observations," in Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, 1967, pp. 281-297.

C. Hooge, "Fuzzy logic Extends Pattern Recognition Beyond Neural Networks,"
Vision Systems Design, pp. 32-37, 1998.

L. A. Zadeh, "The role of fuzzy logic in the management of uncertainty in
expert systems," Fuzzy sets and systems, vol. 11, pp. 197-198, 1983.

G. Klir and B. Yuan, Fuzzy sets and fuzzy logic vol. 4: Prentice Hall New
Jersey, 1995.

V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM
computing surveys (CSUR), vol. 41, p. 15, 2009.

I S. Reed and X. Yu, "Adaptive multiple-band CFAR detection of an optical
pattern with unknown spectral distribution," IEEE Transactions on Acoustics,
Speech and Signal Processing vol. 38, pp. 1760-1770, 1990.

D. Manolakis and G. Shaw, "Detection algorithms for hyperspectral imaging
applications," Signal Processing Magazine, IEEE, vol. 19, pp. 29-43, 2002.

A. Meyer-Baese and V. J. Schmid, Pattern Recognition and Signal Analysis in
Medical Imaging. Elsevier, 2014.



62

[63]

65)

[66]

[67]

[68]

[69]

[70]

[71]

[72]

K. Varmuza, Pattern recognition in chemistry vol. 21: Springer Science &
Business Media, 2012,
(24 November 2015). City of Melbourne: Street Furniture Plan. Available:

https://www.melbourne.vic.gov.au/AboutCouncil /PlansandPublications /strateg

ies/Documents/street  furniture plan.PDF

(24 November 2015). Toronto: Coordinated Street Furniture Program.

Available: http://www.toronto.ca/legdocs/mmis/2015 /pw/berd/backeroundfile-

80110.pdf

J. Aschbacher and M. P. Milagro-Pérez, "The European Earth monitoring
(GMES) programme: Status and perspectives," Remote sensing of Environment,
vol. 120, pp. 3-8, 2012.

M. Bossard, J. Feranec, and J. Otahel, "CORINE land cover technical guide:
Addendum 2000," ed: European Environment Agency Copenhagen, 2000.

G. Biittner, J. Feranec, G. Jaffrain, L. Mari, G. Maucha, and T. Soukup, "The
CORINE land cover 2000 project," EARSeL eProceedings, vol. 3, pp. 331-346,
2004.

G. Villa, A. Arozarena, I. del Bosque, N. Varcarcel, C. Garefa, and M. Solfs, "El
Plan Nacional de Observacién del Territorio en Espafia," in XI Congreso
Nacional de Teledeteccion, Puerto de la Cruz, 2005, pp. 21-23.

A. Arozarena, G. Villa, N. Valcércel, E. Caballero, and A. Porcuna, "Sistema de
informacién de ocupacién del suelo en Espana (SIOSE) como proyecto integrado
en el plan nacional de observacién del territorio," in Informacion espacial y
nuevas tendencias en las tecnologtas de la informacion geogrdfica (TIGs), 2007,
pp. 295-308.

B. Rodriguez-Cuenca, J. A. Malpica, and M. C. Alonso, "Region-growing
segmentation of multispectral high-resolution space images with open software,"
in IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
2012, pp. 4311-4314.

B. Rodriguez-Cuenca, M. Alonso-Rodriguez, E. Domenech-Tofino, N. Valcdrcel-
Sanz, J. Delgado-Herndndez, J. Peces-Morera, and A. Arozarena-Villar,
"Procedure to detect impervious surfaces using satellite images and light
detection and ranging (LIDAR) data," in SPIE Remote Sensing, 2014, pp.
924414-924414-9,

B. Rodriguez-Cuenca, M. C. Alonso, and A. Tamés-Noriega, "LULC database
updating from VHR images and LIDAR data using evidence theory," in 2015
Conference of the International Fuzzy Systems Association and the European
Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15), 2015.



(73]

[74]

[75]

[76)

[77]

(80]

[81]

B. Rodriguez-Cuenca, S. Garcfa-Cortés, C. Ordéiez, and M. C. Alonso,
"Automatic Detection and Classification of Pole-Like Objects in Urban Point
Cloud Data Using an Anomaly Detection Algorithm," Remote Sensing, vol. 7,
pp. 12680-12703, 2015,

B. Rodriguez-Cuenca, S. Garcia-Cortes, C. Ordonez, and M. C. Alonso, "A
study of the roughness and curvature in 3D point clouds to extract vertical and
horizontal surfaces," in Geoscience and Remote Sensing Symposium (IGARSS),
2015 IEEE International, 2015, pp. 4602-4605.

B. Rodriguez-Cuenca, M. C. Alonso, S. Garcfa-Corteés, and C. Ordonez,
"Extraccién de sefializacién horizontal en entornos urbanos a partir de nubes de
puntos tridimensionales," presented at the XVI Congreso de la Asociacién
Espafiola de Teledeteccién, Sevilla, Spain, 2015.

B. Rodriguez-Cuenca, S. Garcfa-Cortés, C. Ordéiiez, and M. C. Alonso, "An
approach to detect and delineate street curbs from MLS 3D point cloud data,"
Automation in Construction, vol. 51, pp. 103-112, 2015.

B. Rodriguez-Cuenca, M. Concepcién Alonso-Rodriguez, S. Garcfa-Cortés, and
C. Ordéiiez, "Street curb recognition in 3d point cloud data using morphological
operations," in EGU General Assembly Conference Abstracts, 2015, p. 813.

R. Argiielles-Fraga, C. Ordénez, S. Garcia-Cortés, and J. Roca-Pardinas,
"Measurement planning for circular cross-section tunnels using terrestrial laser
scanning," Automation in Construction, vol. 31, pp. 1-9, 2013.

C. Cabo, C. Ordofiez, S. Garcfa-Cortés, and J. Martinez, "An algorithm for
automatic detection of pole-like street furniture objects from Mobile Laser
Scanner point clouds," ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 87, pp. 47-56, 2014.

B. Rodriguez-Cuenca and J. A. Malpica, "Clasificadores lineal y cuadrético con
utilizacién del contexto espacial," presented at the XIV Congreso AET, Mieres,
Asturias, 2011.

B. Rodriguez-Cuenca and M. C. Alonso, "Semi-automatic detection of swimming
pools from aerial high-resolution images and LiDAR data," Remote Sensing, vol.
6, pp. 2628-2646, 2014.

A. M. de Agirre and J. A. Malpica, "Detecting shadows in a segmented Land
Use Land Cover image with LIDAR data," in IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), 2012, pp. 5458-5461.

B. Rodriguez-Cuenca, J. Malpica, and M. C. Alonso, "A spatial contextual
postclassification method for preserving linear objects in multispectral imagery,"
Geoscience and Remote Sensing, IEEE Transactions on, vol. 51, pp. 174-183,
2013.



[34]

[85]

128

C. Mallet and F. Bretar, "Full-waveform topographic lidar: State-of-the-art,"
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 64, pp. 1-16, 2009.
M. Slota, "Full-waveform data for building roof step edge localization," ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 106, pp. 129-144, 2015.



Acknowledgments

This work has been possible thanks to:

The economic support provided by the following projects:

- Deteccién de cambios cartogrdficos a partir de informacién
georreferenciada bitemporal. Entidad Financiadora: Ministerio de Ciencia
e Innovacién, 01/10/2010 a 30/09/2013. Referencia del proyecto:
CGL2010-15357

- Estudio de metodologias operativas de deteccién automdtica de cambios
basada en la definicién de objetos y determinacién del suelo sellado.
Entidad financiadora: Centro Nacional de Informacién Geogréfica,
30/7/2012 a 31/12/2012. Referencia del proyecto: 2012/00274/001.

- Deteccién de anomalfas y blancos en imégenes hiperespectrales (DABIH).
Entidad financiadora: Ministerio de Defensa, 22/12/2011 a 30/11/2013.
Referencia del proyecto: 2011/00274/001.

- Anslisis de deteccién automdtica de cambios en bases de datos de
ocupacién del suelo. Entidad financiadora: Instituto Geografico Nacional,

20/09/2010 a 19/09/2011. Referencia del proyecto: 2010/00242/001.

The research programs funded by the following institutions:
- Universidad de Alcald, Ayudas de iniciacién en la actividad investigadora
- Ministerio de Ciencia e Innovacién, Programa de Ayudas predoctorales

para la Formacién del Personal Investigador (programa FPI)

129



And the datasets provided by the following data providers:

- Instituto Geografico Nacional and Centro Nacional de Informacién
Geogréfica, for providing aerial ortophotos and Aerial Laser Scanner
(LIDAR) data

- Topcon Inc., Riegl

- University of Vigo

130



Personal acknowledgments

The best is yet to come.

Frank Sinatra

Cuando uno se mete en un charco tan grande como el que realizar una tesis
doctoral supone, la linea de meta se ve tan lejana que parece que nunca va a
llegar. No se sabe ni por dénde empezar a escribir ni qué forma darle a esta
criatura. Pero de repente, un dfa, llegan las prisas para completar el depésito y
poner el punto y final a esta enriquecedora y productiva etapa. Y llega el
momento de agradecer y recordar a todas aquellas personas e instituciones que
en estos 4 afios, de una u otra forma, han hecho que este pequeiio barco llegue a
su puerto.

En lo que al dmbito universitario se refiere, creo que es obligado comenzar
agradeciendo a mis directores y codirectores su tutela, su ayuda y sus consejos
en la realizacién de este trabajo. Sin hacer discriminaciones ni menosprecios, es
inevitable recordar y agradecer en primer lugar al que es el padre y motor de
este trabajo, José Antonio Malpica. Sin tu apoyo, fe, tesén, conocimientos y
ejemplo, todo esto habria sido una mera utopia. Fuiste ti quien me dio la
oportunidad de introducirme en el apasionante mundo de la investigacién y me
ensefiaste que el éxito sélo tiene una férmula muy sencilla y fécil de recordar:
trabajo, trabajo y trabajo. Aun hoy, tres afios después, se echan de menos tus
pasos por el pasillo y tus inagotables ganas de trabajar.

Gracias a Conchita por haber tomado las riendas del grupo de investigacién y

haber sacado fuerzas de flaqueza para tirar para adelante en los momentos maés

131



dificiles. También por tu claridad y por los conocimientos que me has
transmitido, tanto en el aspecto docente como en el investigador. Trabajar
contigo ha resultado muy enriquecedor, tanto en el aspecto estadistico como en
el personal.

Gracias a Silverio y a Tino, por vuestra predisposicién, vuestras ganas de
trabajar, las innumerables revisiones y por haber creido que todo este trabajo
tendria un final feliz. Gracias a la Universidad de Alcald y a su personal, que ha
permitido que esta experiencia saliera adelante.

Gracias a Emmanuel Baltsavias, a Hayko Riemenschneider, a Luc van Gool y al
ETH de Zurich por permitirme trabajar en sus grupos de investigacién, una
experiencia muy enriquecedora y fructifera, tanto en lo profesional como en lo
personal.

Por supuesto, gracias a los miembros del grupo de ecogeofisicos, por la buena
sintonfa entre grupos tan heterogéneos y por los ratos de dispersién en forma de
comidas, cafés o cafias, igual de necesarios que las horas ante libros y
ordenadores. En especial, gracias a Judith, por tus revisiones, tus traducciones,
tus dotes para las artes gréficas y tu capacidad multitarea que nunca deja de
sorprender. Y gracias a Antonio por tu paciencia, tus consejos y tu manera de
ver la vida.

También quiero recordar y rendir un pequefio homenaje a todas aquellas
personas fuera del dmbito universitario que, quizd sin saberlo, han puesto su
granito de arena en este trabajo.

Gracias a mis padres, Jorge y Cris, por su incansable fe en mi, por celebrar mis
éxitos mds que si fueran sus propias victorias y por ayudarme a levantarme a
cada tropiezo. También por tener claro que una buena educacién es el mejor
legado que se puede transmitir a un hijo y por inculcarme la cultura del esfuerzo
como tlnica forma de alcanzar el éxito. Gracias a mi familia, en especial a mis
abuelos, por seguir dando guerra, a mi tio Miguel, por compartir el sufrimiento
rojiblanco aiin con cientos de kilémetros de distancia, y a mi tia Isa, por seguir
con nosotros después del susto que la vida nos dio.

Gracias a Sara, companera de aventuras y viaje, por tu infinita paciencia, tus
constantes dnimos, tu contagiosa sonrisa y por aguantarme todo este tiempo,
tanto en las alegrfas como cuando pintaron bastos. Espero que nos queden

muchas fronteras que atravesar y muchas puestas de sol que fotografiar.



I also would like to thank Erwin for treated me like a son when I was in
Switzerland and for being the perfect tourist host, showing me the incredible
sightseeing and amazing secrets that your country hides.

Gracias a mis amigos de toda la vida, los Nacho, Diego, Chus, Jairo, Jorge,
David, Antonio o Javi, que aunque atin os preguntéis a qué me dedico
exactamente, habéis ayudado a aportar la dosis de realidad necesaria para
mantener la cordura necesaria para acabar la tesis. A mis compaifieros de piso de
Ribera 4, Antonio, Cris y Héctor, que habéis logrado ser como mi pequena
familia en Alcald. Gracias a Agustin, por tu capacidad para liarme con cualquier
historia que tenga relacién con lo geoespacial y por aportar estresantes aunque
necesarias porciones de caos en mi tranquilidad.

Gracias a los conjuntos y asociaciones que me permiten continuar disfrutando de
la muisica. Al conjunto teDeum, por ser una valvula de escape a la rutina de las
pantallas y ordenadores. En especial a Antonio, por tu capacidad de gestion y
de transmitirnos tu amor por la muisica y por las cosas bien hechas. Gracias a
todos y cada uno de los componentes de la Banda de Gaites Villa de Xixén, por
todos los buenos momentos que pasamos en escenarios y pasacalles a uno y otro
lado del Atlantico. Gracias Jose Luis, por haberme dado la oportunidad de
formar parte de esta gran familia y por ser un ejemplo de lucha en defensa de la
verdad y la justicia.

De nuevo, gracias a todos los que habéis hecho que este camino fuera mds
sencillo de recorrer, y pido disculpas a los que, con las prisas, haya olvidado
mencionar. Y esto no es un punto y final, sino un punto y aparte. Seguiré
buscando nuevos retos y metas, pero con vuestra compaiiia, todo serd mucho

mas facil. Porque lo mejor, siempre estd por llegar.

133



134




Curriculum

Y es que es tan alucinante
que hace dias que no duermo
por si acaso al despertarme

veo que todo ha sido un sueno.

Platero y ti

Articles in refereed publications

In Scientific Journals:

1 — Rodriguez-Cuenca, B., Garcia-Cortés, S., Ordénez, C., and Alonso, M.C. (2015).
Automatic detection and classification of pole-like objects in urban point cloud
data using an anomaly detection algorithm. Remote Sensing, 7(10), 12680-12703;
doi: 10.3390/rs71012680

2 — Rodriguez-Cuenca, B., Garcia-Cortés, S., Ordéiiez, C., and Alonso, M. C. (2015).
An approach to detect and delineate street curbs from MLS 3D point cloud data.

Automation in Construction, vol. 51, pp- 103-112, doi:
10.1016/j.autcon.2014.12.009

3 — Rodriguez-Cuenca, B., and Alonso, M. C. (2014). Semi-automatic detection of
swimming pools from aerial high-resolution images and LIDAR data. Remote

Sensing, 6(4), pp. 2628-2646, doi:10.3390/rs6042628

135



4 — Rodriguez-Cuenca, B., Malpica, J. A., and Alonso, M. C. (2013). A spatial
contextual postclassification method for preserving linear objects in multispectral

imagery. IEEE Transactions on Geoscience and Remote Sensing, 51(1), pp. 174-

183, doi: 10.1109/TGRS.2012.2197756

In Conference Proceedings:

1 — Rodriguez-Cuenca, B., Alonso, Marfa C., Garcfa-Cortés, S. and Ordénez, C. (2015).
Extraccion de senalizacion horizontal en entornos urbanos a partir de nubes de

puntos tridimensionales, Libro de actas del XVI Congreso de la Asociacidn

Espanola de Teledeteccion, ISBN: 978-84-608-1726-0, pp. 411-414

2 — Tameés-Noriega, A., Rodriguez-Cuenca, B. and Alonso, M.C. (2015). Ldgica difusa
en la extraccion de coberturas del terreno, Libro de actas del XVI Congreso de la

Asociacion Espanola de Teledeteccion, ISBN: 978-84-608-1726-0, pp.435-438

3 — Rodriguez-Cuenca, B., Alonso, Maria C., Garcia-Cortés, S. and Ordénez, C. (2015).
A study of the roughness and curvature in 3D point clouds to extract vertical and
horizontal surfaces, Geoscience and Remote Sensing Symposium (IGARSS), 2015

IEEE International, DOL 10.1109/IGARSS.2015.7326853

4 — Tamés-Noriega, A., Rodriguez-Cuenca, B. and Alonso, M.C. (2015). Automatic
extraction of buildings and trees wusing fuzzy K-means classification on high-
resolution satellite imagery and LIDAR data, Geoscience and Remote Sensing
Symposium (IGARSS), 2015 IEEE International, DOL
10.1109/IGARSS.2015.7325833

5 — Rodriguez-Cuenca, B., Alonso, M.C. and Tamés-Noriega, A. (2015). LULC
database updating from VHR images and LIDAR data using evidence theory,
Proceedings of the conference IFSA EUSFLAT 2015, pp. 987-993. ISSN 1951-
6851

6 — Rodriguez-Cuenca, B., Alonso-Rodriguez, M. C., Domenech-Tofino, E., Valcdrcel-
Sanz, N., Delgado-Herndndez, J., Peces-Morera, J., and Arozarena-Villar, A.
(2014). Procedure to detect impervious surfaces using satellite images and light
detection and ranging (LIDAR) data. In SPIE Remote Sensing, International
Society for Optics and Photonics, vol. 9244, doi: 10.1117/12.2067259

7 — Alonso M.C., Carda P., Gomez Pardo J.C., Gonzilez Matesanz, F.J., Martinez de
Agirre A., Mena Berrios J., Rodriguez-Cuenca B., Sénchez Oliveros C., Simén E.

and del Val A. (2013). Deteccién de anomalias y blancos en imdgenes
hiperespectrales, pp. 523 — 531, ISBN: 978-84-7402-399-2

136



8 - Rodriguez-Cuenca, B., Martinez de Agirre, A., Alonso, M.C. and del Val, A.
(2013). Road extraction method at the pizel and object level using high resolution
images and LIDAR data with evidence theory, in Proceedings of ESA Living
Planet Symposium, ISSN 2072-4292

9 — Martinez de Agirre A., Rodriguez-Cuenca B., Alonso M.C. and del Val A. (2013).
Method for object-based anomaly detection in hyperspectral images, in
Proceedings of ESA Living Planet Symposium, ISSN 2072-4292

10 — Rodriguez-Cuenca, B., Malpica, J. A., and Alonso, M. C. (2012). Region-growing
segmentation of multispectral high-resolution space images with open software. In

IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.
4311-4314, doi: 10.1109/IGARSS.2012.6351714

11 — Rodriguez-Cuenca, B. and Malpica, J.A. (2011). Clasificadores lineal y cuadrdtico
con utilizacion del contexto espacial, XIV Congreso AET 2011, pp. 553-556, ISSN:
AS - 3588

12 — Malpica, J. A., Alonso, M.C. and Rodriguez-Cuenca, B. (2011). Some techniques
for anomaly detection in hyperspectral imageries, ISBN 1-57083-095-9

Book chapters:

1 - Domenech, E., Mallet, C., Arozarena, A., Ruiz, L.A., Hermosilla, T., Recio, J., Gil,
J.L, Malpica, J.A., Alonso, M.C., Martinez de Agirre, A. and Rodriguez-Cuenca,
B. (2014). Change detection in high-resolution land use/land cover geodatabases

(at object level). Official Publication European Spatial Data Research, N°64, pp.
10-63

Non-refereed articles

1 — Rodriguez-Cuenca, B., Alonso, M.C., Garcia-Cortés, S. and Ordénez, C. (2015).
Reconocimiento de patrones en nubes de puntos, V jornadas de Joévenes

Investigadores de la Universidad de Alcald, Alcald de Henares, Spain, ISBN:

2 — Rodriguez-Cuenca, B. (2012). Deteccion de coberturas del suelo a partir de
imdgenes aéreas de alta resolucion, IV Jornadas de Jévenes Investigadores de la
Universidad de Alcald, Alcald de Henares, ISBN: 978-84-15834-15-1

3 — Rodriguez-Cuenca, B. and Malpica Velasco, J.A. (2012). Deteccion de piscinas en

tmdgenes de alta resolucion, X Congreso Topcart, Madrid, Spain.

137



4 — Martinez de Agirre, A., Rodriguez-Cuenca, B. and Malpica, J. A. (2012). Accuracy
of a DTM obtained from LIDAR data. VII Asamblea Hispano Portuguesa de
Geodesia v Geofisica, San Sebastidn, Pais Vasco, ISBN 978-84-041323-1-5

Contributions to meetings

1 — Rodriguez-Cuenca, B., Alonso, Maria C., Garcia-Cortés, S. and Ordénez, C. (2015).
Extraccion de senalizacion horizontal en entornos urbanos a partir de nubes de

puntos tridimensionales, XVI Congreso AET 2015, Sevilla, Spain. Talk.

2 - Tamés-Noriega, A., Rodriguez-Cuenca, B. and Alonso, Marfa C. (2015). Ldgica
difusa en la extraccion de coberturas del terreno, XVI Congreso AET 2015,

Sevilla, Spain. Poster.

3 — Rodriguez-Cuenca, B., Garcfa-Cortés, S., Ordénez, C. and Alonso, M.C. (2015). A
study of the roughness and curvature in 3D point clouds to extract vertical and

horizontal surfaces, IEEE IGARSS Annual Symposium, Mildn, Italy. Poster.

4 — Tamés-Noriega, A., Rodriguez-Cuenca, B. and Alonso, M.C. (2015). Automatic
extraction of buildings and trees using fuzzy K-means classification on high-
resolution satellite imagery and LIDAR data, IEEE IGARSS Annual Symposium,
Mildn, Italy. Poster.

5 — Rodriguez-Cuenca, B., Alonso, M.C. and Tamés-Noriega, A. (2015). LULC
database updating from VHR images and LIDAR data using evidence theory,
IFSA EUSFLAT 2015, Gijén, Asturias, Spain. Talk.

6 — Rodriguez-Cuenca, B., Alonso-Rodriguez, M.C., Garcia-Cortés, S. and Ordénez, C.
(2015). Street curb recognition in 3d point cloud data using morphological

operations. European Geosciences Union (EGU), Vienna, Austria. Talk.

7 — Rodriguez-Cuenca, B., Alonso, M.C., Garcia-Cortés, S. and Ordénez, C. (2014).
Reconocimiento de patrones en nubes de puntos, V jornadas de Jdvenes

Investigadores de la Universidad de Alcald, Alcald de Henares, Spain, Talk.

8 — Rodriguez-Cuenca, B., Alonso-Rodriguez, M. C., Domenech-Tofiio, E., Valcdrcel-
Sanz, N., Delgado-Herndndez, J., Peces-Morera, J., and Arozarena-Villar, A.
(2014). Procedure to detect impervious surfaces using satellite images and light
detection and ranging (LIDAR) data, SPIE 9244, Image and Signal Processing for
Remote Sensing XX, Amsterdam, Netherlands. Talk.

9 — Alonso M.C., Carda P., Gémez Pardo J.C., Gonzdlez Matesanz, F.J., Martinez de
Agirre A., Mena Berrios J., Rodriguez-Cuenca B., Sdnchez Oliveros C., Simén E.

and del Val A. (2013). Deteccion de anomalias y blancos en imdgenes

138



hiperespectrales, Congreso Nacional de I+D en Seguridad y Defensa, Madrid,
Spain. Talk,

10 — Martinez de Agirre, A., Rodriguez-Cuenca, B., Alonso, M.C. and del Val, A.
(2013). Method for object-based anomaly detection in hyperspectral images, ESA
Living Planet Symposium, Edinburgh, Scotland. Poster.

11 — Rodriguez-Cuenca, B., Martinez de Agirre, A., Alonso, M.C. and del Val, A.
(2013). Road extraction method at the pizel and object level using high resolution
images and LIDAR data with evidence theory, ESA Living Planet Symposium,
Edinburgh, Scotland. Poster.

12 — Rodriguez-Cuenca, B., (2012). Deteccidon de coberturas del suelo a partir de

imégenes aéreas de alta resolucion, IV jornadas de Jévenes Investigadores de la

Universidad de Alcald, Alcald de Henares. Talk.

13 — Rodriguez-Cuenca, B. and Malpica Velasco, J.A. (2012). Deteccidn de piscinas en

imdgenes de alta resolucién, X Congreso Topcart, Madrid. Talk.
14 — Rodriguez-Cuenca, B., Malpica, J.A. and Alonso, M.C. (2012). Region-growing

segmentation of multispectral high-resolution space images with open software,
IEEE IGARSS Annual Symposium, Munich, Germany. Poster

15 — Martinez de Agirre, A., Rodriguez-Cuenca, B. and Malpica, J. A. (2012).
Accuracy of a DTM obtained from LIDAR data. VII Asamblea Hispano

Portuguesa de Geodesia y Geofisica, San Sebastidn, Pais Vasco. Talk.

16 — Rodriguez-Cuenca, B. and Malpica, J.A. (2011). Clasificadores lineal y cuadrdtico
con utilizacion del contexto espacial, XIV Congreso AET 2011, Mieres del

Camino, Asturias. Poster.

17 — Malpica, J. A., Alonso M.C. and Rodriguez-Cuenca, B. (2011). Some techniques
for anomaly detection in hyperspectral imageries, ASPRS 2011 Annual
Conference, Milwaukee, USA. Talk.

Other contributions

Organizing and teaching the course “Deteccién de Anomalfas y Blancos en Imdgenes

Hiperespectrales”, Instituto Tecnolégico de la Marafiosa, 25 hours, November 2013.

Organizing and teaching the course “Procesamiento y Andlisis de Imagen Satélite y

Aérea”, Cursos de Verano Universidad de Alcald, 25 horas, July 2014.

139



Talk “Clasificacién de imédgenes: de la fotografia aérea al mapa”, ciclo de divulgacién

“Jévenes Cientificos”, XIV Semana de la Ciencia, November 2014, Madrid.

Organization of the conference “V Jornadas de Jévenes Investigadores de la

Universidad de Alcald”, November 2014.

Short stays

Department of Photogrammetry and Remote Sensing, ETH Zurich, October-November

2013. Supervisor: Professor Emmanuel Baltsavias

Institute for Visual Computing (IVC), Computer Vision and Geometry Lab, ETH

Zurich, May-June 2014. Supervisor: Professor Hayko Riemenschneider

Degrees
B.S. degree in Technical Topography Engineer
B.S. degree in Geodesy and Cartography Engineer

M.Sc. in Climate, Energy and Environmental Risk

140



